Модели отражения света
Зеркальное отражение. Угол между нормалью и падающим лучом равен углу между нормалью и отраженным лучом [21]. Оба луча и нормаль располагаются в одной плоскости (рис. 10.3). Поверхность считается идеально зеркальной, если на ней отсутствуют какие-либо неровности, шероховатости. Собственного цвета такая поверхность не имеет. Световая энергия падающего луча отражается только по линии отраженного луча. Какое-либо рассеяние в стороны от этой линии отсутствует. В природе, вероятно, нет идеально гладких поверхностей, поэтому полагают, что если глубина шероховатостей существенно меньше длины волны излучения, то рассеяние не наблюдается. Если поверхность зеркала отполирована неидеально, то наблюдается зависимость интенсивности отраженного света от длины волны: чем больше длина волны, тем лучше отражение. Например, красные лучи отражаются сильнее, чем синие. При наличии шероховатостей имеется зависимость интенсивности отраженного света от угла падения. Отражение света максимально для углов падения луча, близких к 90°. Падающий луч, попадая на слегка шероховатую поверхность реального зеркала, порождает не один отраженный луч, а несколько лучей, рассеиваемых по различным направлениям. Зона рассеивания зависит от качества полировки и может быть описана некоторым законом распределения. Как правило, форма зоны рассеивания симметрична относительно линии идеального зеркально отраженного луча. К числу простейших, но достаточно часто используемых относится эмпирическая модель распределения Фонга, согласно которой интенсивность зеркально отраженного излучения пропорциональна (cos a) p, где a – угол отклонения от линии идеально отраженного луча. Показатель p находится в диапазоне от 1 до 200 и зависит от качества полировки. Соотношение можно записать следующим образом: Is = I Ks cos p a, где I – интенсивность излучения источника; Ks – коэффициент пропорциональности. Диффузное отражение. Этот вид отражения присущ матовым поверхностям. Матовой можно считать такую поверхность, размер шероховатостей которой уже настолько велик, что падающий луч рассеивается равномерно во все стороны [21]. Диффузное отражение описывается законом Ламберта, согласно которому интенсивность отраженного света пропорциональна косинусу угла между направлением на точечный источник света и нормалью к поверхности: Id = I Kd cos q, где I – интенсивность источника света; Kd – коэффициент, который учитывает свойства материала поверхности. Значение Kd находится в диапазоне от 0 до 1. Матовая поверхность имеет свой цвет. Наблюдаемый цвет определяется комбинацией собственного цвета поверхности и цвета излучения источника света. Поскольку в природе не существует идеально зеркальных или полностью матовых поверхностей, то при изображении объектов средствами компьютерной графики обычно моделируют сочетание зеркального и диффузного рассеивания в пропорции, характерной для конкретного материала. В этом случае модель отражения записывают в виде суммы диффузного и зеркального компонентов: I отр = I (Kd cos q + Ks cos p a), где константы Kd, Ks определяют отражательные свойства материала. Согласно этой формуле интенсивность отраженного света равна нулю для некоторых углов q и a. Однако в реальных сценах обычно нет полностью затемненных объектов, следует учитывать фоновую подсветку, освещение рассеянным светом, отраженным от других объектов. В таком случае интенсивность может быть эмпирически выражена следующей формулой: I отр = Ia Ka + I (Kd cos q + Ks cos p a), где Ia – интенсивность рассеянного света, Ka – константа, определяющая рассеивающие свойства поверхности. Следует учесть тот факт, что энергия от точечного источника света уменьшается пропорционально квадрату расстояния. Использование такого правила вызывает определенные сложности, поэтому на практике часто реализуют модель, выражаемую эмпирической формулой I отр = Ia Ka + I (Kd cos q + Ks cos p a) / (R + k), где R – расстояние от центра проекции до поверхности; k – константа, подбираемая эмпирически.
|