Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные формулы комбинаторики





 

Комбинаторика — раздел математики, изучающий вопросы о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов).

Как при решении задач с использованием классического опре­деления вероятности, так и в дальнейшем нам понадобятся некото­рые формулы комбинаторики. Приведем наиболее употребитель­ные из них.

Размещениями из n различных элементов по m элементов (m х n) называются комбинации, составленные из данных n элементов по m элементов, которые отличаются либо са­мими элементами, либо порядком элементов.

Например, из трех элементов а, b, с можно составить по два эле­мента следующие размещения:

ab, ас, ba, bc, ca, cb.

Число различных размещений из n элементов по m элементов определяется с помощью формулы

.

Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2? Искомое число сигналов 5*6=30.

Перестановками из n различных элемен­тов называются размещения из этих n элементов по n.

Перестановки можно считать частным случаем размещений при m = n. Следовательно, число всех перестановок из n элементов вычисляется по формуле Рn = n(n - 1)(n - 2)... 3 • 2 • 1 = n!

Сколько трехзначных чисел можно составить из цифр 1, 2, 3, если каждая цифра входит в изображение числа толь­ко один раз? Искомое число трехзначных чисел Р = 3! = 1 *2*3 = 6.

Сочетаниями из n различных элементов по m элементов называются комбинации, составленные из данных n элементов по m элементов, которые отличаются хотя бы одним элементом.

Отметим разницу между сочетаниями и размещениями: в первых не учитывается порядок элементов.

Число сочетаний из п элементов по m элементов вычисляется по формуле

Отметим особенность формулы:

.

Этой особенностью удобно пользоваться, когда m > n/2.

Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей? Искомое число способов

Приведем, наконец, один из примеров применения формул ком­бинаторики к нахождению вероятности события.

Набирая номер телефона, абонент забыл две последние цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Какова вероятность того, что номер набран правильно?

Две последние цифры можно набрать способами, а благо­приятствовать событию М (цифры набраны правильно) будет толь­ко один способ. Поэтому

 








Дата добавления: 2015-04-16; просмотров: 464. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия