Правила ранжирования
Использование порядковой шкалы позволяет присваивать ранги объектам по какому-либо признаку. Таким образом, метрические значения переводятся в ранговые. При этом фиксируются различия в степени выраженности свойств. В процессе ранжирования следует придерживаться 2 правил. Правило порядка ранжирования. Надо решить, кто получает первый ранг: объект с самой большей степенью выраженности какого-либо качества или наоборот. Чаще всего это абсолютно безразлично и не отражается на конечном результате. Традиционно принято первый ранг приписывать объектам с большей степенью выраженности качества (большему значению – меньший ранг). Например, чемпиону присуждают первое место, а не наоборот. Хотя, и здесь если бы был принят обратный порядок, то результаты от этого не изменились бы. Так что порядок ранжирования каждый исследователь вправе определять сам. Например, Е.В. Сидоренко рекомендует меньшему значению приписывать меньший ранг. В некоторых случаях это удобнее, но непривычнее. Например: имеется неупорядоченная выборка, данные которой необходимо проранжировать. {2, 7, 6, 8, 11, 15, 9}. После упорядочивания выборки ранжируем ее.
Отдельно следует сказать следующее. Существует группа редко используемых непараметрических критериев (Т-критерий Вилкоксона, U-критерий Манна-Уитни, Q-критерий Розенбаума и др.), при работе с которыми всегда надо меньшему значению приписывать меньший ранг. Правило связанных рангов. Объектам с одинаковой выраженностью свойств приписывается один и тот же ранг. Этот ранг представляет собой среднее значение тех рангов, которые они получили бы, если бы не были равны. Например, надо проранжировать выборку, содержащую ряд одинаковых метрических данных: {4, 5, 9, 2, 6, 5, 9, 7, 5, 12}. После упорядочивания выборки следует вычислить среднее арифметическое значение связанных рангов.
Рассмотренная классификация признаков по шкалам измерений не исчерпывает всех мыслимых типов классификаций. Так, для применения статистических методов, оперирующих частотами распределений, более существенной может оказаться классификация по такому критерию, как непрерывность теоретической функции эмпирического распределения. Для других методов определяющим является решение вопроса о том, какому теоретическому типу распределения соответствует эмпирическое распределение либо, в более узком смысле, является ли распределение нормальным. Если же различать условия исследования того или иного явления, признаки могут подразделяться на факториальные признаки (причина) и результативные признаки (следствие). Успех применения любого метода зависит от того, насколько хорошо анализируемые данные соответствуют основным предположениям, принятым при разработке статистического метода. Методы анализа, разработанные для определенного типа признаков, могут привести к совершенно неверным выводам при их применении к признакам другого типа, поэтому нужно быть особенно внимательным при выборе метода, адекватного анализируемым данным. Тип исходных данных определяет, какими методами эти данные могут быть обработаны. Формулы нельзя применять слепо и автоматически, без рассмотрения вопроса об их пригодности в каждом данном случае. ПОКАЗАТЕЛЬ - одно из основных понятий статистики, под которым имеется в виду обобщенная количественная характеристика явлений и процессов в их качественной определенности в условиях конкретного места и времени. Примерами конкретных показателей служат: численность населения, плодородие почв, уровень производительности труда и др. Величина показателя определяется в результате измерения объектов (элементов) и меняется в зависимости от методологических особенностей его построения обусловленных, в свою очередь степенью охвата изучаемых процессов. Показатели называются натуральными, когда они выражены в единицах счета или в различных физических единицах измерения (в мерах линейных, площади, объема, массы и др.), и денежными, или стоимостными, когда они представляют собой денежную оценку экономических объектов. ВАРИАЦИЯ - различия в значениях того или иного признака у отдельных единиц, входящих в данную статистическую совокупность. Например, студенты учебной группы различаются по успеваемости, затратам времени на подготовку к занятиям, любимым занятиям в свободное время, росту, полу и т. д. Для изучения вариации используют ряды распределения и показатели размеров вариации. Изучение вариации позволяет судить об исходных данных с точки зрения их однородности. Чем больше вариация, больше различия между единицами, тем более неоднородны исходные данные.
|