Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задания и задачи. Задача 1. Функция полезности индивида: u =(QA + 4)(QB + 5), где QA, QB – количества двух различных благ





Задача 1. Функция полезности индивида: u =(QA + 4)(QB + 5), где QA, QB – количества двух различных благ, его бюджет: М = 64, а цены благ pA = 1, pB = 1.5. Запишите уравнение кривой безразличия, на которой находится потребитель в момент равновесия.

Задача 2. Функция спроса на газ имеет вид QD = 3.75pn – 5pg, а функция его предложения – QS = 14 + 0.25pn + 2pg, где pn, pg – соответственно цены нефти и газа. При каких ценах на данные энергоносители объемы спроса и предложения газа будут равны 20 ед.?

Задача 3. В условиях задачи 2 определить, на сколько процентов изменится объем продажи газа при увеличении цены нефти на 25%.

Задача 4. На рынке данного товара функция спроса описывается уравнением: QD = 6 – P, функция предложения: QS = –3 + 2P, где QD объем спроса, млн. шт. в год; QS объем предложения, млн. шт. в год;

а) определите равновесную цену и равновесный объем продажи;

б) если цена данного товара будет составлять 2 ден. ед., что образуется на рынке: излишек или дефицит товара? В каком размере?

в) какая ситуация будет на рынке, если цена возрастет до 4 ден. ед.?

Задача 5. Опытным путем установлены функции спроса q = (p+8)/(p+2) и предложения s = p + 0,5, где q и s количество товара, соответственно покупаемого и предлагаемого на продажу в единицу времени, p цена товара. Найти: а) равновесную цену, т.е. цену, при которой спрос и предложение уравновешиваются; б) эластичность спроса и предложения для этой цены; в) изменение дохода при увеличении цены на 5% от равновесной.

Задача 6. Функции спроса q и предложения s от цены p выражаются соответственно уравнениями q = 7 p и s = p + 1. Найти: а) равновесную цену; б) эластичность спроса и предложения для этой цены; в) изменение дохода (в процентах) при увеличении цены на 5% от равновесной.

Задача 7. Как связаны предельные и средние полные затраты предприятия, если эластичность полных затрат равна 1?

Задача 8. Спрос на товар А (яблоки) описывается уравнением Q=100 А + РВ; спрос на товар В (груши) уравнением Q =100 2PВ+PА. Предложение товара А описывается уравнением Q = 50 + РА; предложение товара В уравнением QsB = 50 + PB.

Задача 9. Определите параметры рыночного равновесия на двух рынках; как изменятся параметры рыночного равновесия, если на товар В (груши) будет введен налог в размере 10 ден. ед. за единицу товара; выгодно ли государству это делать. Рассчитайте изменение общественного благосостояния. Сравните потери общественного благосостояния в случае, если такой налог будет введен на двух рынках одновременно.

Задача 10. Потребитель выделил на приобретение двух товаров 3300 д.е. Цена первого товара 15 д.е., второго 22 д.е. Функция полезности потребителя U(x,y) = 60x + 90y. Записать задачу потребителя.

Задача 11. Потребитель выделил на приобретение двух товаров 3300 д.е. Цена первого товара 15 д.е., второго 22 д.е. Функция полезности потребителя U(x,y) = 60x + 90y. Изобразить геометрически бюджетное множество, отметить бюджетную линию.

Задача 12. Потребитель выделил на приобретение двух товаров 3300 д.е. Цена первого товара 15 д.е., второго 22 д.е. Функция полезности потребителя U(x,y) = 60x + 90y. Изобразить геометрически кривую безразличия U(x,y) = 4500.

Задача 13. Потребитель выделил на приобретение двух товаров 3300 д.е. Цена первого товара 15 д.е., второго 22 д.е. Функция полезности потребителя U(x,y) = 60x + 90y. Какова предельная полезность потребителя по каждому товару?

Задача 14. Потребитель выделил на приобретение двух товаров 3300 д.е. Цена первого товара 15 д.е., второго 22 д.е. Функция полезности потребителя U(x,y) = 60x + 90y. Решить задачу потребителя.

Задача 15. Потребитель выделил на приобретение двух товаров 3300 д.е. Цена первого товара 15 д.е., второго 22 д.е. Функция полезности потребителя U(x,y) = 60x + 90y. Определить максимальную полезность потребителя от потребления этих двух товаров.

Задача 16. Спрос потребителя на некоторый товар в зависимости от цены определяется функцией d(p) = 0,3p + 60. Определить коэффициент ценовой эластичности при p = 120, p = 60.

Задача 17. Спрос потребителя на некоторый товар в зависимости от цены определяется функцией d(p) = 0,3p + 60. При какой цене коэффициент эластичности равен единице?

Задача 18. Спрос потребителя на некоторый товар в зависимости от цены определяется функцией d(p) = 0,3p + 60. Эластичен ли спрос при p = 120, p = 60?

Задача 19. Исследовался спрос на товар двух групп потребителей. Функции спроса в зависимости от цены, предъявляемые каждой группой, имеют вид: d1(p) = 0,2p + 80, d2(p) = 0,4 + 60. Построить совокупную функцию спроса.

Задача 20. Исследовался спрос на товар двух групп потребителей. Функции спроса в зависимости от цены, предъявляемые каждой группой, имеют вид: d1(p) = 0,2p + 80, d2(p) = 0,4 + 60. Чему равен совокупный спрос при p = 100 д.е., p = 200 д.е.?

Задача 21. Исследовался спрос на товар двух групп потребителей. Функции спроса в зависимости от цены, предъявляемые каждой группой, имеют вид: d1(p) = 0,2p + 80, d2(p) = 0,4 + 60. Изобразить геометрически спрос каждой группы и совокупный спрос.

Задача 22. Для трех видов продукции А, В и С модели зависимости удельных постоянных расходов от объема выпускаемой продукции выглядят следующим образом: yA = 600, yВ = 80 + 0,7х, yС= 40х0,5. Определить коэффициенты эластичности по каждому виду продукции.

Задача 23. Фирма работает в условиях совершенной конкуренции: выпускает один вид продукции, используя при этом два вида ресурсов. Производственная функция фирмы равна f(x,y) = 80xy, цена реализации продукции 120 д.е., ресурсы приобретаются по ценам W1 = 20 д.е., W2 = 15 д.е. соответственно.

а) Записать функцию прибыли.

б) Записать условия максимума прибыли.

в) Решить задачу фирмы максимизации прибыли.

г) Построить изокванту f(x,y) = 6400.

д) Построить изокосту C(x,y) = 3000.

Задача 24. Предприятие вырабатывает игрушки, которые продает на совершенно конкурентном рынке по 5 ден. ед. за штуку. Производственная функция задана уравнением Q = 30L – 0,5L2, где Q – количество игрушек за месяц; L – количество рабочих, чел. Напишите формулу для вычисления стоимости предельного продукта труда на данном предприятии. Если текущая ставка заработной платы составляет 50 ден. ед. в месяц, сколько рабочих наймет предприятие? Если заработная плата в данном регионе увеличится до 100 ден. ед. и предприятие вынужденное будет и себе повысить ставку заработной платы, как в результате изменятся экономические показатели предприятия: объем производства, прибыль, занятость. При какой ставке заработной платы предприятие вынужденное будет остановиться?

Задача 25. Рассмотрим ПФ X = 2.341K0.264L0.678 и показатели экономики некоторой страны: валовой продукт возрос с 2000 по 2009 г. в 1.47 раза, ОПФ за этот же период увеличились в 1.88 раза, а число занятых – в 1.24 раза. Вычислить по ней масштаб и эффективность производства.

Задача 26. Для ПФ Кобба-Дугласа (Задача 3) найти в явном виде нормы замещения фондов трудовыми ресурсами и трудовых ресурсов фондами.

Задача 27. Производственная функция фирмы описывается функцией Кобба-Дугласа , где x – затраты капитала, y – затраты труда. а) Рассчитать выпуск при x = 243, y = 32.

б) Рассчитать предельную и среднюю производительность труда при x = 243, y = 32.

в) Рассчитать предельную и среднюю фондоотдачу при x = 243, y = 32.

Задача 28. Производственная функция фирмы имеет следующий вид:

X= 4 +24 х 1+ 2 x 1 x 2+6 x 2 ,

где x 1, x 2 затраты ресурсов. Определить максимальный выпуск и обеспечивающие этот выпуск затраты ресурсов.

Задача 29. Производственная функция вида:

X=5 описывает зависимость между затратами ресурсов x 1, x 2, x 3 и выпуском X. Определить максимальный выпуск, если x1+ x2+ x3=9. Каковы предельные продукты в оптимальной точке?

Задача 30. Производственная функция фирмы имеет следующий вид:

X=3 .

Определить предельные продукты по ресурсам и построить изокванту Х=3. Найти норму замены первого ресурса вторым в точке x1+ x2=1.

 








Дата добавления: 2015-04-16; просмотров: 2244. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия