Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчетные значения для определения уравнения динамики





Год Процент загрязнения воздуха от уровня ПДК (Y) ti ti2 уiti Теоретические значения уi
           
  39,4 -9   -354,6 39,29
  39,8 -7   -278,6 39,73
  40,0 -5   -200,0 40,17
  40,6 -3   -121,8 40,61
  41,4 -1   -41,4 41,05
  41,9 +1   41,9 41,49
  41,9 +3   125,7 41,93
  42,0 +5   213,0 42,37
  42,6 +7   300,2 42,81
  43,1 +9   387,9 43,25
Сумма 412,7     72,3 412,70

Из таблицы находим: при n = 10

 


тогда уравнение прямой будет иметь вид

.

По полученному уравнению находим теоретические значения
процента загрязнения воздуха от уровня ПДК для каждого периода
времени.

Мерой колеблемости уровней динамического ряда выступает
средний квадрат отклонений фактических уровней ряда от переменных уровней, исчисляемых по тренду. Эта величина подобна
дисперсии, исчисляемой в рядах распределения с той разницей,
что отсчет отклонений ведется не от средней (постоянной для
данного ряда), а от переменной средней — выровненных уровней. Мера колеблемости определяется по формуле

Для тренда (см. табл. 6.7), выраженного прямой уi = 41,27 +
0,22t, мера колеблемости будет равна:

 

=1/10 -[(39,4 - 39,29)2+(39,8 - 39,73)2+(40,0 - 40,17)2+
(40,6 - 40,61)2+(41,4- 41,05)2+(41,9 - 41,49)2+(41,9- 41,93)2+(42,0 - 42,37)2+(42,6 - 42,81)2+(43,1- 43,25)2] = 0,055

Относительная мера колеблемости (своеобразный коэффициент
вариации) определяется по формулам:

;

для нашего примера

а в процентах V t%= V t • 100 = 0,0057•100 = 0,57%. Величина V t служит критерием правильности выбора уравнения тренда.

Сезонные колебания параметров экологических процессов. Многие экологические процессы изменяют свой характер в зависимости
от смены сезонов года. Такие изменения вызывают сезонные колебания тех или иных параметров этих процессов. Изучение сезонных
колебаний имеет самостоятельное значение как исследование особого типа динамики.

Сезонность можно понимать как внутригодовую динамику вообще. Моделью периодически изменяющихся уровней служит ряд
Фурье, аналитическое выражение которого применительно к динамике имеет вид

В этом уравнении величина k определяет номер гармоники ряда
Фурье и может быть взята с необходимой степенью точности (чаще
всего от 1 до 4). Параметры уравнения определяются методом МНК
по формулам

Для изучения специфического периодического явления сезонности берем n =12 (число месяцев в году), а ряд динамики можно
записать в виде, показанном в табл. 6.9.

Таблица 6.9


Ряд динамики для определения сезонных колебаний


 

  π/6 π /3 π /2 2π/3 5 π/ 6 π 7 π /6 4π/3 3π/2 5π/3 11π/6
y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

 

При вычислениях принимается во внимание, что в четырех квадратах от 0 до 2π косинусы и синусы четыре раза принимают одни и
те же значения: 0; 0,5; 0,866 и 1, взятые со знаком минус или
плюс.

Пример. Рассмотрим модель сезонности для данных, приведенных в табл. 6.10.

Таблица 6. 10

Данные о периодически изменяющихся уровнях по месяцам

 

Месяц t у Cos(t) Sin(t) yсоs(t) ysin(t) yt
    39,8 1,000 0,000 39,80 0,00 44,17
  π/6 62,2 0,866 0,500 53,86 31,10 93,70
  π /3 125,5 0,500 0,866 62,95 109,03 152,13
  π /2 256,2 0,000 1,000 0,00 256,20 205,81
5 2π/3 271,1 -0,500 0,866 138,05 239,10 234,88
  5π/6 255,7 -0866   -221,44 127,85 237,04
  π 177,6 - 1,000 0,000 -177,60 0,00 168,31
  7π/6 144,0 - 0866 - 0,000 -124,70 122,00 160,16
  4π/3 86,7 -0,500 t -0,866 - 46,35 -75,08 129,87
  3π/2 52,8 0,000 -1,000 0,000 52,80 88,49
  5π/3 38,3 0,500 - 0,866 19,15 -33,17 18,97
  11π/6 37,9 - 0,866 - 0,500 32,82 -18,95 16,82
Сумма - 1553,2 - - - 496,56 461,28 1552,9

 

Р е ш е н и е. Вычисляем cos(t), sin(t), у∙cos(t), у∙sin(t) и определяем

 


Тогда уравнение. сезонной модели будет иметь вид

Индексом сезонности называется отношение средней из фактических уровней одноименных месяцев к средней из выровненных
данных по тем же месяцам

Следовательно, величина iсез различна для каждого месяца и
зависит от способа выравнивания, которое может быть проведено либо применением 12-месячной скользящей средней, либо
аналитическим выравниванием.

Показателем силы колеблемости динамического ряда из-за се-
зонного характера процесса служит среднее квадратическое отклонение индексов сезонности (выражается в процентах) от 100 %

Сравнение средних квадратических отклонений, вычисленных
за два периода, показывают сдвиги в сезонности. Если величина
уменьшается, то сезонный характер исследуемого явления идет на
убыль.

Изучение глубины сезонных колебаний возможно и путем определения отношений отклонения фактических уровней от выровненных к теоретическим отклонениям, принятым за «норму».

Некоторые способы измерения размаха сезонной волны основаны на изучении не абсолютных отклонений фактических данных от
выровненных, а отклонений с учетом знака.

 

 

назад

 







Дата добавления: 2015-04-16; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия