Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачи оптимизации





Как уже были отмечено выше, эволюция - это процесс постоянной оптимизации биологических видов. Естественный отбор гарантирует, что наиболее приспособленные особи дадут большое количество потомков, а благодаря генетическому наследованию, часть потомков не только сохранит высокую приспособленность родителей, но будет иметь и новые свойства. Если эти новые свойства оказываются полезными, то с большой вероятностью они перейдут и в следующее поколение. Таким образом, происходит накопление полезных качеств и постепенное повышение приспособленности биологического вида в целом. Зная, как решается задача оптимизации видов в природе, применим похожий метод для решения разных реальных задач.

Задачи оптимизации - наиболее распространенный и важный для практики класс задач. Их приходится решать любому из нас или в быту, распределяя свое время между разными делами, или на работе, добиваясь максимальной скорости работы программы или максимальной прибыльности компании - в зависимости от должности. Среди этих задач есть решаемые простым путем, но есть и такие, точное решение которых найти практически невозможно.

Введем обозначения и приведем несколько классических примеров. Как правило, в задаче оптимизации мы можем руководить несколькими параметрами (обозначим их значения через x1, x2,..., xn, целью является максимизация (или минимизация) некоторой целевой функции, f(x1, x2,..., xn), зависящей от этих параметров. Например, если нужно максимизировать целевую функцию "доход компании", тогда управляемыми параметрами будут число сотрудников компании, объем производства, затраты на рекламу, цены на конечные продукты и т.д. Эти параметры связаны между собой - в частности, при уменьшении числа сотрудников скорее всего упадет и объем производства.

Генетический алгоритм - новейший, но не единственно возможный способ решения задач оптимизации. Известно два основных пути решения таких задач - метод перебора или градиентный метод. Рассмотрим классическую задачу коммивояжера. Суть задачи состоит в нахождении кратчайшего пути прохождения всех городов.

Переборный метод проще. Для поиска оптимального решения (максимум целевой функции) нужно последовательно вычислить значения функции во всех точках. Недостатком является большое количество вычислений.

Другой способ - градиентный спуск. Выбираем случайные значения параметров, далее значения постепенно изменяются, достигая наибольшей скорости роста целевой функции. Алгоритм может остановиться, достигнув локального максимума. Градиентные методы быстрые, но не гарантируют оптимального решения (поскольку целевая функция имеет несколько максимумов).

Генетический алгоритм представляет собой комбинацию переборного и градиентного методов. Механизмы кроссинговера (скрещивания) и мутации реализуют переборную часть, а отбор лучших решений - градиентный спуск.

То есть, если на некотором множестве задана сложная функция от нескольких переменных, тогда генетический алгоритм является программой, которая за допустимое время находит точку, где значение функции находится довольно близко к максимально возможному значению. Выбирая приемлемое время расчета, получаем лучшие решения, которые можно получить за это время.







Дата добавления: 2015-04-16; просмотров: 663. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия