История появления эволюционных алгоритмов
Природа поражает своей сложностью и богатством проявлений. Среди примеров можно назвать сложные социальные системы, иммунные и нейронные системы, сложные взаимосвязи между видами. Они - всего лишь некоторые из чудес, ставшие очевидными при глубоком исследовании природы вокруг нас. Наука - это одна из систем, которая обьясняет окружающее и помогает приспособиться к новой информации, получаемой из внешней среды. Многое из того, что мы видим и наблюдаем, можно объяснить теорией эволюции через наследственность, изменение и отбор. На мировоззрение людей сильно повлияла теория эволюции Чарльза Дарвина, представленная в работе "Происхождение Видов", в 1859 году. Множество областей научного знания многим обязана революции, вызванной теорией эволюции и развития. Но Дарвин, подобно многим современникам, предполагающим, что в основе развития лежит естественный отбор, не мог не ошибаться. Например, он не смог показать механизм наследования, при котором поддерживается изменчивость. Однако Дарвин обнаружил главный механизм развития: отбор в соединении с изменчивостью. Во многих случаях, специфические особенности развития через изменчивость и отбор все еще не бесспорные, однако, основные механизмы объясняют невероятно широкий спектр явлений, наблюдаемые в Природе. Поэтому не удивительно, что ученые, занимающиеся компьютерными исследованиями, в поисках вдохновения обратились к теории эволюции. Возможность того, что вычислительная система, наделенная простыми механизмами изменчивости и отбора, могла бы функционировать по аналогии с законами эволюции в естественных системах, была очень привлекательной. Эта надежда является причиной появления ряда вычислительных систем, построенных на принципах естественного отбора. История эволюционных вычислений началась с разработки ряда разных независимых моделей. Основными из них были генетические алгоритмы и классификационные системы Голанда (Holland), разработанные в начале 60-х лет. После выхода книги, ставшей классикой - "Адаптация в естественных и искусственных системах" ("Adaptation in Natural and Artifical Systems", 1975), направление получило общее признание. Главная трудность при построении вычислительных систем, основанных на принципах естественного отбора и применении этих систем в прикладных задачах, состоит в том, что естественные системы довольно хаотичные, а все наши действия, фактически, носят четкую направленность. Мы используем компьютер как инструмент для решения определенных задач, что мы сами и формулируем, и акцентируем внимание на максимально быстром выполнении при минимальных затратах. Естественные системы не имеют таких целей или ограничений, во всяком случае, нам они не известны. Выживание в природе не направлено к фиксированной цели, вместо этого эволюция делает шаг вперед в любом доступном направлении. Возможно это большое обобщение, но усилия, направленные на моделирование эволюции по аналогии с естественными системами можно разбить на две больших категории: 1. системы, смоделированные на биологических принципах. Они успешно используются для задач функциональной оптимизации и могут легко быть описаны небиологическим языком; 2. системы, которые биологически более правдоподобны, но на практике неэффективными. Они больше похожи на биологические системы, имеют сложное и интересное поведение, и, наверняка, в ближайшем будущем получат практическое применение. Конечно, на практике нельзя разделять эти вещи так строго. Эти категории - просто два полюса, между которыми лежат разные вычислительные системы. Ближе к первому полюсу - эволюционные алгоритмы, такие как Эволюционное Программирование (Evolutionary Programming), Генетические Алгоритмы (Genetic Algorithms) и Эволюционные Стратегии (Evolution Strategies). Ближе ко второму полюсу - системы, которые могут быть классифицированы как Искусственная Жизнь (Artificial Life). Конечно, эволюция биологических систем не единственный "источник вдохновения" творцов новых методов, которые моделируют естественные процессы.
|