Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Для того чтобы описать количественно колебания тела под действием силы упругости пружины или колебания шарика, подвешенного на нити, воспользуемся законами механики Ньютона





Уравнение движения тела, колеблющегося под действием силы упругости. Согласно второму закону Ньютона произведение массы тела m на ускорение его равно равнодействующей всех сил, приложенных к телу:

m = (3.1)

Это — уравнение движения. Запишем уравнение движения для шарика, движущегося прямолинейно вдоль горизонтали под действием силы упругости пружины (см. рис. 3.3). Направим ось ОХ вправо. Пусть начало отсчета координат соответствует положению равновесия шарика (см. рис. 3.3, а).

В проекции на ось ОХ уравнение движения (3.1) можно записать так: mаx = Fx упр, где а х и Fх упрсоответственно проекции ускорения и силы упругости пружины на эту ось.

Согласно закону Гука проекция Fx ynp прямо пропорциональна смещению шарика из положения равновесия. Смещение же равно координате х шарика, причем проекция силы и координата имеют противоположные знаки (см. рис. 3.3, б, в). Следовательно,

Fx упр = -kx (3.2)

где k — жесткость пружины.

Уравнение движения шарика тогда примет вид

x = -kx. (3.3)

Разделив левую и правую части уравнения (3.3) на m, получим

Так как масса т и жесткость k — постоянные величины, то их отношение также постоянная величина.

Мы получили уравнение, описывающее колебания тела под действием силы упругости. Оно очень простое: проекция ах ускорения тела прямо пропорциональна его координате х, взятой с противоположным знаком.


16.







Дата добавления: 2015-04-19; просмотров: 526. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия