Понятие энтропии ввел Клаузиус в 1865 г. на основе анализа работы тепловых машин (рис. 1.7.). Любой тепловой двигатель может функционировать лишь при условии обмена теплом с двумя источниками различной температуры, причем газ (рабочее тело) получает тепло Q1 от источника с высокой температурой T1(нагреватель) и отдает тепло Q2 источнику с низкой температурой T2 (холодильник). Передача тепла холодильнику необходима для того, чтобы привести газ, используемый в тепловых двигателях, в начальное состояние, т.к. для непрерывного действия теплового двигателя цикл должен быть замкнутым. Поэтому к.п.д. тепловых машин: n =(Q1 - Q2)/Q1 =1- Q2/Q1 всегда меньше единицы. Для идеального газа в цикле Карно процессы являются обратимыми (рис. 1.7.), и было показано, что Q1/Q2= T1/T2. Из этого следует, что Q1/T1= Q2/T2 или Q1/T1- Q2/T2 =0. В реальных тепловых машинах процессы являются необратимыми, и, чтобы привести газ в исходное состояние, необходимо передать холодильнику больше тепла, чем в идеальной тепловой машине. Коэффициент полезного действия реальных машин всегда меньше, чем для идеальных и Q1/T1 - Q2/T2 > 0.
Величина S = Q/T, или приведенная теплота, была названа энтропией. Эта величина является функцией состояния термодинамической системы. Изолированные (замкнутые) системы не обмениваются веществом и энергией с окружающим пространством. В таких системах изменение энтропии ΔS = 0 (для обратимых процессов) и ΔS >0 (для необратимых). Все реальные процессы необратимые и поэтому энтропия в изолированной системе для самопроизвольных процессов может только возрастать, что указывает на однонаправленность всех процессов в природе. Этот вывод получил название закона возрастания энтропии.
Примерами обратимых процессов являются: цикл Карно для идеального газа, колебания идеального маятника (без потерь энергии за счет трения). В них при проведении процесса в прямом и обратном направлении система проходит одни и те же состояния и изменение энтропии равно нулю. Примерами необратимых процессов могут быть: расширение газа; диффузия, теплопередача. Все эти процессы могут проходить самопроизвольно только в одном направлении, в результате которых энтропия возрастает.
термодинамики за исключение понятия энтропии. В ее основе лежат уравнения классической механики, которые при изменении знака времени не меняются, то есть обратимы. С точки зрения классической механики самопроизвольные процессы, протекающие только в одном направлении, могли бы протекать и в обратном направлении без нарушения ее законов.