Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интервальная оценка





Количество статистических данных для оценки надежности, полученных в процессе эксплуатации, принципиально ограничено. Полученные по ограниченному объему информации точечные оценки могут оказаться весьма приближенными. Причем отклонения этих оценок от истинного значения оцениваемого параметра являются величинами случайными. Очевидно, что с увеличением числа наблюдений (отказов) случайная ошибка оценки показателей уменьшается. На основе опытных данных используется специальная методика оценки показателей надежности в определенном интервале возможных их значений. Предположим, что истинное значение средней наработки до отказа составляет Т0, а средняя наработка до отказа определена по полученным отказам:

,

где n - количество отказов за время испытаний, ti - наработка до i-го отказа. Чем меньше n тем больше расхождение между Т0 и , то есть существует интервал расхождения. Найти точные границы, в пределах которых находится истинное значение искомой величины, не представляется возможным. Однако можно определить интервал ее возможных значений с некоторой доверительной вероятностью . При этом, чем больше доверительная вероятность b, тем шире границы интервала и наоборот. В общем виде эта зависимость имеет запись

, (8.1)

где Тн и Тв - соответственно нижняя и верхняя границы средней наработки до отказа, где лежат и Т0.

Вероятность того, что значение Т0 выйдет за заданный интервал называется уровнем значимости:

(8.2)

Значения доверительных вероятностей b обычно принимают равными 0,9; 0,95; 0,99. Соответствующие им уровни значимости составят 0,1; 0,05; 0,01. Доверительная вероятность b, определяемая выражением (8.1), характеризует степень достоверности результатов двусторонней (то есть с определением верхней и нижней границ) оценки.

Доверительный интервал для средней наработки до отказа при равных вероятностях a /2 выхода за правую (верхнюю) и левую (нижнюю) границы для экспоненциального распределения [11, 19] определяется по выражению

, (8.3)

где и - значения (хи-квадрат) при параметрах и 1 - ; 2r = k - число степеней свободы, для вероятностей P = и Р = 1 - соответственно.

Когда вычисляется только нижняя граница, то

. (8.4)

В выражениях (8.3) и (8.4) - суммарная наработка до отказа по отказам, зафиксированным во время эксперимента. Значения определяются по таблице П-1 квантилей распределения (хи-квадрат).

Таким образом, для заданных уровней значимости a и числа степеней свободы k по таблице (см. прил. 1) находят соответствующие значения , подставляют в выражение (8.3) и находят Tн и Tв. Величина a задается в зависимости от требований, предъявляемых к анализируемой системе. Как известно, для экспоненциального закона и , и выражения оценки надежности верхнего и нижнего значений вероятности безотказной работы имеют вид

, где ; (8.5)

, где .

Из рис. 8.2 видно, что по практическим соображениям более важно определить Pн(t). Если значение Pн(t) удовлетворяет заданному уровню надежности Pзад(t) на интервале времени от 0 до t, то истинное значение:

Это говорит о запасе надежности анализируемого устройства на интервале времени от 0 до t.

 







Дата добавления: 2015-04-19; просмотров: 419. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия