Интервальная оценка
Количество статистических данных для оценки надежности, полученных в процессе эксплуатации, принципиально ограничено. Полученные по ограниченному объему информации точечные оценки могут оказаться весьма приближенными. Причем отклонения этих оценок от истинного значения оцениваемого параметра являются величинами случайными. Очевидно, что с увеличением числа наблюдений (отказов) случайная ошибка оценки показателей уменьшается. На основе опытных данных используется специальная методика оценки показателей надежности в определенном интервале возможных их значений. Предположим, что истинное значение средней наработки до отказа составляет Т0, а средняя наработка до отказа определена по полученным отказам: , где n - количество отказов за время испытаний, ti - наработка до i-го отказа. Чем меньше n тем больше расхождение между Т0 и , то есть существует интервал расхождения. Найти точные границы, в пределах которых находится истинное значение искомой величины, не представляется возможным. Однако можно определить интервал ее возможных значений с некоторой доверительной вероятностью . При этом, чем больше доверительная вероятность b, тем шире границы интервала и наоборот. В общем виде эта зависимость имеет запись , (8.1) где Тн и Тв - соответственно нижняя и верхняя границы средней наработки до отказа, где лежат и Т0. Вероятность того, что значение Т0 выйдет за заданный интервал называется уровнем значимости: (8.2) Значения доверительных вероятностей b обычно принимают равными 0,9; 0,95; 0,99. Соответствующие им уровни значимости составят 0,1; 0,05; 0,01. Доверительная вероятность b, определяемая выражением (8.1), характеризует степень достоверности результатов двусторонней (то есть с определением верхней и нижней границ) оценки. Доверительный интервал для средней наработки до отказа при равных вероятностях a /2 выхода за правую (верхнюю) и левую (нижнюю) границы для экспоненциального распределения [11, 19] определяется по выражению , (8.3) где и - значения (хи-квадрат) при параметрах и 1 - ; 2r = k - число степеней свободы, для вероятностей P = и Р = 1 - соответственно. Когда вычисляется только нижняя граница, то . (8.4) В выражениях (8.3) и (8.4) - суммарная наработка до отказа по отказам, зафиксированным во время эксперимента. Значения определяются по таблице П-1 квантилей распределения (хи-квадрат). Таким образом, для заданных уровней значимости a и числа степеней свободы k по таблице (см. прил. 1) находят соответствующие значения , подставляют в выражение (8.3) и находят Tн и Tв. Величина a задается в зависимости от требований, предъявляемых к анализируемой системе. Как известно, для экспоненциального закона и , и выражения оценки надежности верхнего и нижнего значений вероятности безотказной работы имеют вид , где ; (8.5) , где . Из рис. 8.2 видно, что по практическим соображениям более важно определить Pн(t). Если значение Pн(t) удовлетворяет заданному уровню надежности Pзад(t) на интервале времени от 0 до t, то истинное значение: Это говорит о запасе надежности анализируемого устройства на интервале времени от 0 до t.
|