Проверка гипотез о законе распределения
Обычно сущность проверки гипотезы о законе распределения ЭД заключается в следующем. Имеется выборка ЭД фиксированного объема, выбран или известен вид закона распределения генеральной совокупности. Необходимо оценить по этой выборке параметры закона, определить степень согласованности ЭД и выбранного закона распределения, в котором параметры заменены их оценками. Пока не будем касаться способов нахождения оценок параметров распределения, а рассмотрим только вопрос проверки согласованности распределений с использованием наиболее употребительных критериев. Критерий хи-квадрат К. Пирсона Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F (x) и эмпирическим распределением Fп (x), которая приближенно подчиняется закону распределения c 2. Гипотеза Н 0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда. Итак, пусть выборка представлена статистическим рядом с количеством разрядов y. Наблюдаемая частота попаданий в i -й разряд ni. В соответствии с теоретическим законом распределения ожидаемая частота попаданий в i -й разряд составляет Fi. Разность между наблюдаемой и ожидаемой частотой составит величину (n i – Fi). Для нахождения общей степени расхождения между F (x) и Fп (x) необходимо подсчитать взвешенную сумму квадратов разностей по всем разрядам статистического ряда
|