Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аксиомы Пеано





Множество будем называть множеством натуральных чисел, если зафиксирован некоторый элемент (единица) и функция (функция следования) так, что выполнены следующие условия

  1. (1 является натуральным числом);
  2. Если , то (Число, следующее за натуральным, также является натуральным);
  3. (1 не следует ни за каким натуральным числом);
  4. Если S (b) = a и S (c) = a, тогда b = c (если натуральное число a непосредственно следует как за числом b, так и за числом c, то b = c);
  5. Аксиома индукции. Пусть P (n) — некоторый одноместный предикат, зависящий от параметра — натурального числа n. Тогда:

если P (1) и , то

(Если некоторое высказывание P верно для n = 1 (база индукции) и для любого n при допущении, что верно P (n), верно и P (n + 1) (индукционное предположение), то P (n) верно для любых натуральных n).

Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде».

Принципиальным фактом является то, что эти аксиомы по сути однозначно определяют натуральные числа (категоричность системы аксиом Пеано). А именно, можно доказать (см.[1], а также краткое доказательство[2]), что если и — две модели для системы аксиом Пеано, то они необходимо изоморфны, то есть существует биекция такая, что и для всех .

Поэтому, достаточно зафиксировать в качестве какую-либо одну конкретную модель множества натуральных чисел, например, ту, что описана ниже.

Теоретико-множественное определение (Определение Фреге-Рассела)

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

Числа, заданные таким образом, называются ординальными.

Первые несколько ординальных чисел и соответствующие им натуральные числа:

Ноль как натуральное число

Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах Пеано заменяют 1 на 0. В этом случае ноль считается натуральным числом. При определении через классы равномощных множеств 0 является натуральным числом по определению. Специально отбрасывать его было бы неестественно. Кроме того, это значительно усложнило бы дальнейшее построение и применение теории, так как в большинстве конструкций ноль, как и пустое множество, не является чем-то выделенным. Одним из преимуществ натурального нуля является то, что при этом образует полугруппу с единицей.

В русской литературе обычно ноль исключён из числа натуральных чисел , а множество натуральных чисел с нулём обозначается как . Если в определение натуральных чисел включен ноль, то множество натуральных чисел записывается как , а без нуля как .

В международной математической литературе, с учётом сказанного выше и во избежание неоднозначностей, множество обычно называют множеством положительных целых чисел и обозначают . Множество зачастую называют множеством неотрицательных целых чисел и обозначают .

Операции над натуральными числами

К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:

  • Сложение. Слагаемое + Слагаемое = Сумма
  • Умножение. Множитель * Множитель = Произведение
  • Возведение в степень ab, где a — основание степени и b — показатель степени. Если основание и показатель натуральны, то и результат будет являться натуральным числом.

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).

  • Вычитание. Уменьшаемое − Вычитаемое = Разность. При этом Уменьшаемое должно быть больше Вычитаемого (или равно ему, если считать 0 натуральным числом).
  • Деление. Делимое / Делитель = (Частное, Остаток). Частное p и остаток r от деления a на b определяются так: a = p * b + r, причём . Заметим, что именно последнее условие запрещает деление на ноль, так как иначе a можно представить в виде a = p * 0 + a, то есть можно было бы считать частным 0, а остатком = a.

Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чиселопределяется именно через бинарные операции сложения и умножения.







Дата добавления: 2015-04-19; просмотров: 2325. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия