Аксиомы Пеано
Множество будем называть множеством натуральных чисел, если зафиксирован некоторый элемент (единица) и функция (функция следования) так, что выполнены следующие условия
если P (1) и , то (Если некоторое высказывание P верно для n = 1 (база индукции) и для любого n при допущении, что верно P (n), верно и P (n + 1) (индукционное предположение), то P (n) верно для любых натуральных n). Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде». Принципиальным фактом является то, что эти аксиомы по сути однозначно определяют натуральные числа (категоричность системы аксиом Пеано). А именно, можно доказать (см.[1], а также краткое доказательство[2]), что если и — две модели для системы аксиом Пеано, то они необходимо изоморфны, то есть существует биекция такая, что и для всех . Поэтому, достаточно зафиксировать в качестве какую-либо одну конкретную модель множества натуральных чисел, например, ту, что описана ниже. Теоретико-множественное определение (Определение Фреге-Рассела) Согласно теории множеств, единственным объектом конструирования любых математических систем является множество. Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам: Числа, заданные таким образом, называются ординальными. Первые несколько ординальных чисел и соответствующие им натуральные числа: Ноль как натуральное число Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах Пеано заменяют 1 на 0. В этом случае ноль считается натуральным числом. При определении через классы равномощных множеств 0 является натуральным числом по определению. Специально отбрасывать его было бы неестественно. Кроме того, это значительно усложнило бы дальнейшее построение и применение теории, так как в большинстве конструкций ноль, как и пустое множество, не является чем-то выделенным. Одним из преимуществ натурального нуля является то, что при этом образует полугруппу с единицей. В русской литературе обычно ноль исключён из числа натуральных чисел , а множество натуральных чисел с нулём обозначается как . Если в определение натуральных чисел включен ноль, то множество натуральных чисел записывается как , а без нуля как . В международной математической литературе, с учётом сказанного выше и во избежание неоднозначностей, множество обычно называют множеством положительных целых чисел и обозначают . Множество зачастую называют множеством неотрицательных целых чисел и обозначают . Операции над натуральными числами К замкнутым операциям (операциям, не выводящим результат из множества натуральных чисел) над натуральными числами относятся следующие арифметические операции:
Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).
Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чиселопределяется именно через бинарные операции сложения и умножения.
|