Студопедия — Свойства
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства






  • Всякая последовательность является своей подпоследовательностью.
  • Для всякой подпоследовательности верно, что .
  • Подпоследовательность сходящейся последовательности сходится к тому же пределу, что и исходная последовательность.
  • Если все подпоследовательности некоторой исходной последовательности сходятся, то их пределы равны.
  • Любая подпоследовательность бесконечно большой последовательности также является бесконечно большой.
  • Из любой неограниченной числовой последовательности можно выделить бесконечно большую подпоследовательность, все элементы которой имеют определённый знак.
  • Из любой числовой последовательности можно выделить либо сходящуюся подпоследовательность, либо бесконечно большую подпоследовательность, все элементы которой имеют определённый знак.

Чи́сла Фибона́ччи — элементы числовой последовательности

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, … (последовательность A000045 вOEIS)

в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (известного как Фибоначчи)[1]. Иногда число 0 не рассматривается как член последовательности.

Более формально, последовательность чисел Фибоначчи задается линейным рекуррентным соотношением:

Иногда числа Фибоначчи рассматривают и для отрицательных номеров n как двусторонне бесконечную последовательность, удовлетворяющую тому же рекуррентному соотношению. При этом члены с отрицательными индексами легко получить с помощью эквивалентной формулы «назад»: Fn = Fn + 2Fn + 1:

n −10 −9 −8 −7 −6 −5 −4 −3 −2 −1                      
Fn −55   −21   −8   −3   −1                        

Легко заметить, что .

Происхождение

Последовательность Фибоначчи была хорошо известна в древней Индии, где она применялась в метрических науках (просодии, другими словами — стихосложении), намного раньше, чем она стала известна в Европе.

Образец длиной n может быть построен путём добавления S к образцу длиной n -1, либо L к образцу длиной n -2; и просодицисты показали, что число образцов длиною n является суммой двух предыдущих чисел в последовательности. Дональд Кнутрассматривает этот эффект в книге «Искусство программирования».

На Западе эта последовательность была исследована Леонардо Пизанским, известным как Фибоначчи, в его труде «Liber Abaci» (1202). Он рассматривает развитие идеализированной (биологически нереальной) популяции кроликов, предполагая что:

  • В «нулевом» месяце имеется пара кроликов (1 новая пара).
  • В первом месяце первая пара производит на свет другую пару (1 новая пара).
  • Во втором месяце обе пары кроликов порождают другие пары и первая пара погибает (2 новые пары).
  • В третьем месяце вторая пара и две новые пары порождают в общем три новые пары, а старая вторая пара погибает (3 новые пары).

Закономерным является тот факт, что каждая пара кроликов порождает ещё две пары на протяжении жизни, а затем погибает.

Пусть популяция за месяц n будет равна F (n). В это время только те кролики, которые жили в месяце n -2, являются способными к размножению и производят потомков, тогда F (n -2) пар прибавится к текущей популяции F (n -1). Таким образом общее количество пар будет равно F (n) = F (n -1) + F (n -2).

Формула Бине выражает в явном виде значение Fn как функцию от n:

,

где — золотое сечение. При этом и являются корнями характеристического уравнения .

Из формулы Бине следует, что для всех , Fn есть ближайшее к целое число, то есть . В частности, при справедлива асимптотика .

Формула Бине может быть аналитически продолжена следующим образом:

При этом соотношение Fz + 2 = Fz + 1 + Fz выполняется для любого комплексного числа z.

Тождества

И более общие формулы:

  • Числа Фибоначчи представляются значениями континуант на наборе единиц: , то есть

, а также ,

где матрицы имеют размер , i — мнимая единица.

  • Числа Фибоначчи можно выразить через многочлены Чебышева:

  • Для любого n,

  • Следствие. Подсчёт определителей даёт

Свойства

  • Наибольший общий делитель двух чисел Фибоначчи равен числу Фибоначчи с индексом, равным наибольшему общему делителю индексов, т. е. (Fm, Fn) = F (m, n). Следствия:
    • Fm делится на Fn тогда и только тогда, когда m делится на n (за исключением n = 2). В частности, Fm делится на F 3 = 2 (то есть является чётным) только для m = 3 k; Fm делится на F 4 = 3 только для m = 4 k; Fm делится на F 5 = 5 только для m = 5 k и т. д.
    • Fm может быть простым только для простых m (с единственным исключением m = 4). Например, число F 13 = 233 простое, и его индекс 13 также прост. Обратное не верно, наименьший контрпример — . Неизвестно, бесконечно ли множество чисел Фибоначчи, являющихся простыми.
  • Последовательность чисел Фибоначчи является частным случаем возвратной последовательности, её характеристический многочлен x 2x − 1 имеет корни и .
  • Отношения являются подходящими дробями золотого сечения ϕ и, в частности,
  • Суммы биномиальных коэффициентов на диагоналях треугольника Паскаля являются числами Фибоначчи ввиду формулы

.

  • В 1964 году Дж. Кон (J. H. E. Cohn) доказал,[2] что единственными точными квадратами среди чисел Фибоначчи являются числа Фибоначчи с индексами 0, 1, 2, 12:

F 0 = 02 = 0, F 1 = 12 = 1, F 2 = 12 = 1, F 12 = 122 = 144.

  • Производящей функцией последовательности чисел Фибоначчи является:

  • Множество чисел Фибоначчи совпадает с множеством неотрицательных значений многочлена

z (x, y) = 2 xy 4 + x 2 y 3 − 2 x 3 y 2y 5x 4 y + 2 y,

на множестве неотрицательных целых чисел x и y. [3]

  • Произведение и частное двух любых различных чисел Фибоначчи, отличных от единицы, никогда не является числом Фибоначчи.
  • Период чисел Фибоначчи по модулю натурального числа n называется периодом Пизано и обозначается π(n). Периоды Пизано π(n) образуют последовательность:

1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, … (последовательность A001175 в OEIS)

    • В частности, последние цифры чисел Фибоначчи образуют периодическую последовательность с периодом π(10)=60, последняя пара цифр чисел Фибоначчи образует последовательность с периодом π(100)=300, последние три цифры — с периодом π(1000)=1500, последние четыре — с периодом π(10000)=15000, последние пять — с периодом π(100000)=150000 и т. д.
  • Натуральное число N является числом Фибоначчи тогда и только тогда, когда 5 N 2 + 4 или 5 N 2 − 4 является квадратом.[4]
  • Не существует арифметической прогрессии длиной больше 3, состоящей из чисел Фибоначчи.[5]

Последовательность Фарея n -ного порядка представляет собой возрастающий ряд всех несократимых дробей, знаменатель которых меньше или равен n:

Последовательность Фарея порядка n + 1 можно построить из последовательности порядка n по следующему правилу:

  1. Копируем все элементы последовательности порядка n.
  2. Если сумма знаменателей в двух соседних дробях последовательности порядка n дает число не большее, чем n + 1, вставляем между этими дробями их медианту, равную отношению суммы их числителей к сумме знаменателей.

Пример

Последовательности Фарея для n от 1 до 8:

Свойства

Если p 1 / q 1 < p 2 / q 2 — две соседние дроби в ряде Фарея, тогда q 1 p 2q 2 p 1 = 1.

Доказательство. Заметим, что треугольник на плоскости с вершинами , и не может содержать целых точек, отличных от вершин. Иначе, если целая точка содержится в , то дробь r / s лежит между p 1 / q 1 и p 2 / q 2, а знаменатель s не превосходит . Значит, по формуле Пика, его площадь равна 1 / 2. С другой стороны, площадь равна (q 1 p 2q 2 p 1) / 2. Ч. т. д.

Справедливо и обратное утверждение: если дроби p 1 / q 1 < p 2 / q 2 таковы, что q 1 p 2q 2 p 1 = 1, то они представляют собой соседние члены ряда Фарея .

Дели́мость — одно из основных понятий арифметики и теории чисел, связанное с операцией деления. С точки зрения теории множеств, делимость целых чисел является отношением, определённым на множестве целых чисел.

Если для некоторого целого числа a и целого числа b существует такое целое число q, что bq = a, то говорят, что число a делится нацело на b или, что b делит a.

При этом число b называется делителем числа a, делимое a будет кратным числа b, а число q называется частным от деления a на b.

Хотя свойство делимости определено на всём множестве целых чисел, обычно рассматривается лишь делимость натуральных чисел. В частности, функция количества делителей натурального числа подсчитывает лишь его положительные делители.







Дата добавления: 2015-04-19; просмотров: 1306. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия