Поляризация диэлектриков, виды поляризации
Поляризация – это процесс смещения и упорядочения связанных электрических зарядов в диэлектрике под действием внешнего электрического поля. Способность материала поляризоваться в электрическом поле характеризуется относительной диэлектрической проницаемостью. Диэлектрик, включенный в электрическую цепь можно рассматривать как конденсатор определенной емкости Cд: ε = Cд ∕ C0, (4.1) показывает во сколько раз емкость конденсатора с данным диэлектриком CД больше емкости того же конденсатора в вакууме С0. Виды поляризации: 1. Электронная поляризация Все материалы состоят из атомов, а атом из ядра (протонов) и электронов, вращающихся вокруг него. В отсутствие внешнего электрического поля, электроны быстро вращаются вокруг ядра по круговой орбите и центры приложения зарядов положительного и отрицательного совпадают. Если теперь этот атом поместить в однородное электрическое поле с напряженностью ε, то отрицательно заряженные электроны при своем вращении сместятся в сторону положительного электрода (рисунок 4.1). Центр отрицательного заряда изменит свое положение, и система превратится в диполь. Таким образом, произошла поляризация диэлектрика. Этот вид поляризации называется электронной, происходит она практически мгновенно за время ≈ 10-15 с, поэтому её называют мгновенной. Она характерна для всех типов диэлектриков. Она происходит без рассеивания энергии, проявляется на всех частотах, т.е. практически не зависит от частоты (f = 1014 - 1016 Гц). Электронная поляризация – это упругое смещение и деформация электронных оболочек атомов. Рисунок 4.1 – схематическое изображение электронной поляризации: а – неполяризованный атом при отсутствии электрического поля; б – поляризованный атом при воздействии электрического поля. 2. Ионная поляризация Характерна для твердых тел с ионным строением (каменная соль; в узлах кристаллической решетки находятся ионы Na+ и Cl¯). При приложении поля ионы Na смещаются по направлению внешнего электрического поля Е, а ионы Cl – против направления (рисунок 4.3). Рисунок 4.3 – Схематическое изображение ионной поляризации. Ионная кристаллическая решетка: а – при отсутствии электрического поля; б – при воздействии электрического поля. 3. Дипольно-релаксационная поляризация Дипольные молекулы в отсутствии внешнего электрического поля находятся в тепловом хаотическом движении. При воздействии внешнего электрического поля эти дипольные молекулы ориентируются в направлении поля, т.е. наблюдается эффект поляризации (рисунок 4.4). Рисунок 4.4 – Схематическое изображение дипольно-релаксационной поляризации. Расположение дипольных молекул: а – при отсутствии электрического поля; б – при воздействии электрического поля. При снятии поля поляризованность спадает по экспоненциальному закону: P(τ;) = P0 ∙ e τ ∕ τ;0, (4.5) где P0 – поляризованность в момент снятия напряжения; t 0 – время релаксации дипольной поляризации - это промежуток времени в течение которого поляризованность диэлектрика после снятия поля уменьшается в e = 2,72 раза от первоначального. Обычно t = 10-6 – 10-10 с, следовательно дипольная поляризация проявляется лишь на f < 10-6 – 10-10 Гц. 4. Ионно-релаксационная поляризация Наблюдается в ионных кристаллах с неплотной упаковкой ионов, например в неорганических стеклах, керамике. Этот вид поляризации обусловлен смещением слабо связанных ионов под действием внешнего электрического поля на расстояние больше постоянной кристаллической решетки. Эта поляризация происходит с потерями энергии, и поляризация усиливается с увеличением температуры. 5. Самопроизвольная (спонтанная) поляризация Происходит и в отсутствии внешнего поля. Это характерно для сегнетоэлектриков, они обладают доменной структурой. Домен – это отдельные области в сегнетоэлектрике, имеющие пространственно-однородное упорядочение дипольных моментов элементарных кристаллических ячеек. При воздействии внешнего поля домены ориентируются в направлении поля, что вызывает эффект сильной поляризации, следовательно высокие и сверхвысокие значения ε.
|