Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Классификация проводниковых материалов по характеру применения в РЭА





По характеру применения в радиоэлектронных приборах металлические материалы разделяют на материалы высокой проводимости (удельное электрическое сопротивление ρ≤0,1 мкОм·м) и материалы с высоким сопротивлением (удельное электрическое сопротивление ρ≥0,3 мкОм·м).

Материалы с высокой проводимостью (железо, медь, алюминий, золото, серебро и др.) используют как основу в контактных мате­риалах и припоях, для изготовления проводов, микропроводов, проводящих покрытий и пленок, различных токопроводящих деталей, обкладок конденсаторов, тонкопленочных проводников и контактных площадок в ИМС, выводов радиоэлементов

Материалы с высоким сопротивлением используют в качестве резистивных материалов, материалов для нагревательных элементов и материалов для термопар. Наиболее известные сплавы с высоким сопротивлением: медно-марганцевые (манганины), медно-никелевые (константаны), сплавы ни­келя и хрома (нихромы).

Материалы, обладающие ничтожно малым удельным электри­ческим сопротивлением ρ при очень низких температурах называ­ются сверхпроводниками. Свойством сверхпроводимости обладают ртуть, алюминий, свинец, ниобий, соединения ниобия с оловом, титаном и др.

 

6. Медь: свойства, достоинства и недостатки, применение.

Медь является одним из самых распространенных материалов высокой проводимости. Она обладает следующими свойствами:

- малым удельным электрическим сопротивлением (из всех метал­лов только серебро имеет удельное электрическое сопротивление на несколько процентов меньше, чем у меди);

- высокой механической прочностью;

- удовлетворительной коррозионной стойкостью (даже в услови­ях высокой влажности воздуха медь окисляется значительно мед­леннее, чем, например, железо; интенсивное окисление меди проис­ходит только при повышенных температурах);

- хорошей паяемостью и свариваемостью;

- хорошей обрабатываемостью (медь прокатывается в листы и ленты и протягивается в проволоку).

Медь получают чаще всего в результате переработки сульфид­ных руд. Примеси снижают электропроводность меди. Наиболее вредными из них являются фосфор, железо, сера, мышьяк. Содер­жание фосфора примерно 0,1% увеличивает сопротивление меди на 55%. Примеси серебра, цинка, кадмия дают увеличение сопро­тивления на 1...5%. Поэтому медь, предназначенная для электро­технических целей, обязательно подвергается электролитической очистке.

Недостатком меди является ее подверженность атмосферной кор­розии с образованием окисных и сульфидных пленок. Скорость окис­ления быстро возрастает при нагревании, однако проч­ность сцепления окисной пленки с металлом невелика. Вследствие окисления медь непригодна для слаботочных контактов. При высокой температуре в электрической дуге окись меди диссоциирует, обнажая металлическую поверхность. Металлическое отслаивание и термическое разложение окисной пленки вызывает повышенный износ медных кон­тактов при сильных токах.

Значительное влияние на механические свойства меди оказывает водород. После водородного отжига твердость меди может уменьшить­ся в несколько раз. Разрушительное действие водорода сказывается особенно сильно при наличии кислорода, присутствующего в техни­ческой меди в виде закиси Сu2О. Водород, легко проникая в глубь металла при повышенных температурах, вступает в реакцию:

Сu2О + Н2 = 2Сu + Н2О

Давление образующегося в металле водяного пара из-за незначи­тельной скорости диффузии его может достигать нескольких тысяч атмосфер. Это приводит к образованию микротрещин, нарушающих вакуумную плотность материала и придающих ему хрупкость и лом­кость. В производстве это явление называют водородной болезнью.

При холодной протяжке получают твердую (твердотянутую) медь (МТ), которая обладает высоким пределом прочности при растяжении, твердостью и упругостью (при изгибе проволока из твердой меди несколько пружинит).

Твердую медь применяют в тех случаях, когда необходимо обес­печить высокую механическую прочность, твердость и сопротив­ляемость истиранию: для контактных проводов, шин распредели­тельных устройств, для коллекторных пластин электрических машин, изготовления волноводов, экранов, токопроводящих жил кабелей и проводов диаметром до 0,2 мм.

После отжига до нескольких сотен градусов (медь рекристаллизуется при температуре примерно 270 °С) с последующим охлаждением получают мягкую (отожженную) медь (ММ). Мягкая медь имеет проводимость на 3...5% выше, чем у твердой меди.

Мягкая отожженная медь служит электротехническим стандар­том, по отношению к которому удельную электрическую проводи­мость металлов и сплавов выражают при температуре окружающей среды 20°С. Удельная электрическая проводимость такой меди рав­на 58 мкСм/м, соответственно ρ = 0,017241 мкОм·м при значении ТКρ = 4,3·10-3 К-1.

Мягкая медь широко применяется для изготовления фольги и токопроводящих жил круглого и прямоугольного сечения в кабе­лях и обмоточных проводах, где важна гибкость и пластичность (отсутствие «пружинения» при изгибе), а прочность не имеет боль­шого значения.

Из специальных электровакуумных сортов меди изготавливают аноды мощных генераторных ламп, детали СВЧ устройств: магнет­ронов, клистронов, некоторых типов волноводов и др.

Кроме того, медь используют для изготовления фольгированного гетинакса и применяют в микроэлектронике в виде осажденных на подложки пленок, играющих роль проводящих соединений между функциональными элементами схемы.

Несмотря на большой температурный коэффициент линейного расширения по срав­нению с коэффициентом расширения стекол, медь применяют для спа­ев со стеклами, поскольку она обладает рядом замечательных свойств: низким пределом текучести, мягкостью и высокой теплопроводностью. Для впаивания в стекла медному электроду придают специальную форму в виде тонкого рантика, благодаря чему такие спаи называют рантовыми.

Медь сравнительно дорогой и дефицитный материал, поэтому она должна расходоваться экономно. Отходы меди на электротех­нических предприятиях необходимо собирать, не смешивая с дру­гими металлами и менее чистой медью, чтобы их можно было пере­плавить и снова использовать. В ряде случаев медь как проводни­ковый материал заменяют другими металлами, чаще всего алюми­нием.

В ряде случаев, когда от проводникового материала требуется не только высокая проводимость, но и повышенные механическая прочность, коррозионная стойкость и сопротивляемость истиранию, применяют сплавы меди с небольшим содержанием легирующих примесей.

 

7. Бронзы и латуни: свойства, особенности и применение.

Бронзы. Сплавы меди с примесями олова, алюминия, кремния, бериллия и других элементов, среди которых цинк не является ос­новным легирующим элементом, называют бронзами.

При правильно подобранном составе бронзы имеют значитель­но более высокие механические свойства, чем чистая медь (значе­ния предела прочности бронз могут доходить до 800...1200 МПа и более). Бронзы обладают малой объемной усадкой (0,6...0,8%) по сравнению с чугуном и сталью, у которых усадка достигает 1,5...2,5%. Поэтому наиболее сложные детали отливают из бронзы.

Бронзы маркируют буквами Бр (бронза), после которых ставят буквы, обозначающие вид и количество легирующих добавок. На­пример, бериллиевая бронза Бр.В2 (2% бериллия Be, остальное медь Cu); фосфористая бронза Бр.ОФ 6,5-0,15 (6,5% олова Sn, 0,15 фос­фора Р, остальное медь Cu).

Введение в медь кадмия дает существенное повышение механи­ческой прочности и твердости при сравнительно малом снижении удельной электрической проводимости γ.

Кадмиевую бронзу БрКд 0,9 (0,9% кадмия Cd, остальное Cu) применяют для контактных проводов и коллекторных пластин осо­бо ответственного назначения, а также сварочных электродов при контактных методах сварки.

Обладая еще большей, чем кадмиевая бронза, механической прочностью, твердостью и стойкостью к механическому износу (пре­дел прочности при растяжении σp до 1350 МПа) бериллиевая бронза не изменяет своих свойств до температуры примерно 250°С. Она находит применение при изготовлении ответственных токоведущих пружин для электрических приборов, щеткодержателей, токоштепсельных и скользящих контактов.

Фосфористая бронза Бр.ОФ 6,5-0,15 (6,5% олова Sn, 0,15 фосфора Р, остальное медь Cu) отличается низкой электропроводностью. Из нее изготавливают различные малоответственные токоподводящие пружины в электроприборах.

Латуни. Латуни представляют собой медные сплавы, в которых основным легирующим элементом является цинк (до 43%).

Латуни прочнее, пластичнее меди, обладают достаточно высо­ким относительным удлинением при повышенном пределе проч­ности на растяжение по сравнению с чистой медью, они имеют по­ниженную стоимость, так как входящий в них цинк значительно дешевле меди. Иногда для повышения коррозионной стойкости в состав сплава в небольшом количестве вводят алюминий, никель, марганец.

Латуни хорошо штампуются и легко подвергаются глубокой вытяжке (контакты термобиметаллического реле, экраны контуров, пластины воздушных конденсаторов переменной емкости, колпач­ки радиотехнических ламп).

В обозначениях марок сложных латуней после буквы Л (обозна­чение латуни) ставятся буквы, которые указывают на наличие ле­гирующих элементов (кроме меди), например ЛС59-1 (59% меди Cu, 1 % свинца Pb, остальное цинк Zn).

 

8. Алюминий и его сплавы: свойства, особенности и применение.

Алюминий относится к так называемым легким ме­таллам (плотность литого алюминия около 2600, прокатанного - 2700 кг/м3).

Алюминий обладает следующими особенностями:

- удельное электрическое сопротивление ρ алюминия (при содер­жании примесей не более 0,05%) в 1,63 раза больше, чем у меди, поэтому замена меди алюминием не всегда возможна, особенно в радиоэлектронике;

- алюминий приблизительно в 3,5 раза легче меди;

- из-за высоких значений удельной теплоемкости и теплоты плав­ления алюминия нагревание алюминиевого провода до расплавле­ния требует больших затрат энергии, чем нагревание и расплавле­ние такого же количества меди;

- даже при одинаковой стоимости алюминия и меди в слитках сто­имость алюминиевой проволоки почти вдвое ниже, однако исполь­зование алюминия для изолированных проводов в большинстве случаев менее выгодно из-за затрат на изоляцию;

- алюминий на воздухе активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением, ко­торая предохраняет алюминий от дальнейшей коррозии, но созда­ет большое переходное сопротивление в местах контакта алюми­ниевых проводов, что затрудняет пайку Al обычными способами. Чтобы разрушить оксидную пленку AL, используется ультразвук. Оксидная пленка очень прочно сцеплена с поверхностью Al, содержащего незначительное количество примесей. Поэтому Al высокой чистоты чрезвычайно стоек к кислотам, морской воде и другим средам;

- алюминий менее дефицитен, чем медь;

- существенным недостатком алюминия как проводникового ма­териала является низкая механическая прочность, для ее повыше­ния алюминий подвергается механической обработке;

- прокатка, протяжка и отжиг алюминия аналогичны соответству­ющим операциям для меди;

- примеси значительно снижают проводимость алюминия.

Применение Al:

- алюминиевая фольга толщиной 6-7 мкм применяется в качестве обкладок в бумажных конденсаторах или пластины конденсаторов переменной емкости;

- из тонкой алюминиевой фольги, учитывая ее отражательные способности, изготавливают экраны для защиты чувствительной измерительной аппаратуры от воздействия тепла, излучаемого телом человека;

- промышленностью выпускаются с алюминиевой обмоткой провода с круглыми и прямоугольными жилами в волокнистой или резиновой изоляции, широко распространенные кабели с алюминиевыми жилами для прокладки в земле, под водой внутри туннелей и т.д. Алюминиевые провода легче проводов из Cu, но обладают меньшей прочностью, поэтому для обеспечения необходимой надежности используются сталеалюминевые многожильные провода с центральной стальной жилой;

- из оксидированного алюминия изготавливают различные катушки без дополнительной межвитковой и междуслойной изоляции. Но алюминиевые провода с оксидной изоляцией имеют недостатки: ограниченную гибкость и заметную гигроскопичность. В некоторых случаях, чтобы избежать последнего недостатка, изоляцию покрывают лаком;

- алюминиевые пленки хорошо используются в ИС и ГИС в качестве контактов и тонкопленочных проводников. Алюминиевые пленки обычно на Si – пластины наносят методом вакуумного напыления. Алюминий хорошо напыляется, причем обладает хорошим сцеплением к Si и SiO2, обеспечивает хорошие омические контакты (невыпрямляющие) с Si (с p-Si и n+Si);

- алюминиевые проволоки d=25 – 60 мкм используются для подсоединения контактной площадки кристалла ИС к выводам корпуса, причем подсоединенных ультразвуковой сваркой;

- в качестве обкладок тонкопленочных конденсаторов ГИС;

Алюминиевые сплавы. Сплав альдрей (0,3...0,5% меди Cu, 0,4...0,7% кремния Si, 0,2...0,3% железа Fe, остальное алюминий Al) обладает следующими свойствами:

- повышенной механической прочностью (в 2 раза прочнее алю­миния, приближаясь к твердотянутой меди σp = 350 МПа);

- сплав сохраняет легкость чистого алюминия и близок к нему по удельному электрическому сопротивлению (ρ = 0,0317 мкОм·м);

- более высоким пределом вибрационной прочности по сравне­нию с чистым алюминием.

Применяется для изготовления проводов малонагруженных ли­ний электропередачи.

Магналий (сплав алюминия с магнием) отличается низкой плот­ностью. Применяется для изготовления стрелок различных элект­рорадиотехнических приборов.

9. Манганин: состав, свойства и применение.

Манганин - сравнительно пластичный сплав, получивший свое название из-за содержания в нем марганца (от лат. manganum). Его примерный состав: медь Cu - 85% (большое содержание меди при­дает сплаву желтоватый цвет), марганец Мn - 12%, никель Ni - 3%.

Для обеспечения малого значения температурного коэффициен­та удельного электрического сопротивления ТКρ и стабильности удельного электрического сопротивления ρ манга­нин подвергают отжигу в вакууме при температуре примерно 550...600°С в течение 10 ч с последующим медленным охлаждени­ем. Иногда дополнительно отжигают намотанные катушки при тем­пературе 200°С.

После прокатки и волочения из манганина можно получить про­волоку диаметром до 0,02 мм. При температуре 60°С манганино­вая проволока начинает окисляться, поэтому ее применяют в стек­лянной изоляции, которая отличается высокими электроизоляци­онными свойствами, повышенной нагрево- и влагостойкостью.

Микропровод используют для конструирования миниатюрных высокоточных элементов, в том числе прецизионных резисторов больших номиналов.

К недостаткам манганинового микропровода относят невысокую воспроизводимость характеристик и пониженную гибкость из-за хрупкости стеклянной изоляции.

10. Константан: состав, свойства и применение.

Константан представляет собой твердый раствор никеля и меди, получивший свое название за высокое постоянство удельного электрического сопротивления ρ (константа) при изме­нении температуры. Вредной примесью для константана является сера S, образующая с никелем эвтектику с низкой температурой плавления. При этом связь между зернами сплавляемых компонен­тов нарушается, и переработка слитков в проволоку становится не­возможной. Эвтектика способствует развитию межкристаллитной коррозии. Для устранения вредного влияния серы в состав сплава вводят марганец. После гомогенизации константановые слитки подвергают прокатке и волочению и протягивают в проволоку ди­аметром до 0,02 мм. Ориентировочный состав константана: медь Cu - 58,5%, никель Ni - 40%, марганец Мn - 1,5%.

Нагревостойкость константана выше, чем манганина, предель­но допустимая температура при длительной работе достигает 500°С. При нагревании до высоких температур (примерно 900°С) константан окисляется с образованием оксидной изолирующей пленки. Это позволяет применять константан для изготовления реостатов, ре­зисторов и электронагревательных элементов без специальной межвитковой изоляции. Однако в паре с медью константан создает срав­нительно высокую термоЭДС, что затрудняет использование константановых резисторов в точных измерительных схемах. Но это же свойство константана позволяет использовать его в паре с ме­дью или железом для изготовления термопар. Константан приме­няют для изготовления потенциометров, гасящих резисторов.

Широкому применению константана препятствует его повышен­ная стоимость из-за большого содержания в нем дефицитного никеля.

К сплавам для электронагревательных элементов предъявляются следующие требования: высокое удельное электрическое сопротивление ρ, малый температурный коэффициент удельного электрического сопротивления ТКρ, дли­тельная работа на воздухе при высоких температурах (иногда до 1000°С и даже выше), технологичность, невысокая стоимость и доступность компонентов.

 

11. Серебро: свойства и применение.

Серебро – белый блестящий металл со следующими свойствами:

- самый электропроводный металл (удельное электрическое сопро­тивление при нормальной температуре ρ = 0,016 мкОм·м);

- имеет высокие механические свойства (предел прочности при ра­стяжении σр = 200 МПа, относительное удлинение при разрыве ∆ l/l примерно 50%), что позволяет промышленно изготавливать про­водники различного диаметра, включая микропровода диаметром 20 мкм и менее;

- при вжигании или напылении образует прочные покрытия на диэлектриках;

- при повышенных температурах и влажности атомы серебра миг­рируют по поверхности и внутрь диэлектрика, вызывая нарушение работы устройства;

- химическая стойкость ниже, чем у других благородных металлов;

- образует окислы с высокой электропроводностью;

- образует пленки сернистых соединений Ag2S с повышенным удельным сопротивлением, что требует защиты серебряных покрытий лака­ми или тонким слоем более стойкого металла, например палладия;

- остродефицитный материал.

Серебро применяется в широкой номенклатуре контактов в ап­паратуре разных мощностей. Высокие значения удельных теплоем­кости, теплопроводности и электрической проводимости серебра обес­печивают по сравнению с другими металлами наименьший нагрев кон­тактов и быстрый отвод теплоты от контактных точек. Серебро применяют также для непосредственного нанесения на диэлектрики, в качестве электродов, в производстве керамических и слюдяных конденсаторов. Для этого применяют метод вжигания или испарения в вакууме. Серебром покрывают внутренние поверхности волноводов для получе­ния слоя высокой проводимости. С этой же целью серебрению подвер­гают проводники высокочастотных катушек. Ag входит в состав при­поев.

 

12. Вольфрам: свойства и применение.

Вольфрам – светло-серый металл, который обла­дает следующими свойствами:

- наиболее высокая температура плавления;

- очень большая плотность;

- наименьшее значение температурного коэффициента линейно­го расширения ТК l изо всех чистых металлов, применяемых в ваку­умной технике;

- сравнительно дорог, с трудом обрабатывается и поэто­му применяется только там, где его нельзя заменить.

Сравнительно толстые вольфрамовые изделия с мелкокристал­лической структурой очень хрупкие вследствие высокой прочнос­ти отдельно взятых кристаллов при очень слабом их сцеплении меж­ду собой.

Волокнистая структура металла, создаваемая ковкой и волоче­нием, обеспечивает высокую механическую прочность и гибкость тонких вольфрамовых нитей, диаметр которых может быть менее 10 мкм. Применение вольфрама для изготовления нитей ламп на­каливания было впервые предложено русским изобретателем А.Н.Лодыгиным в 1890 г.

Это свойство используют при изготовле­нии термически согласованных спаев вольфрама с тугоплавкими стеклами. Основная область применения вольфрама - изготовле­ние нитей накала осветительных ламп, катодов прямого и косвен­ного накала мощных генераторных ламп, рентгеновских трубок, размыкающих контактов реле, испарителей для нанесения в вакуу­ме тонких пленок различных материалов. Для контактов с больши­ми значениями разрываемой мощности используют металлокерамические материалы на основе порошка вольфрама.

 

13. Легкоплавкие металлы: свойства и применение.

К легкоплавким металлам относятся металлы, у которых температура плавления не более 500˚С. Основные их параметры приведены в таблице 2.7.

Галлий Ga. Галлий – металл, который плавится почти при комнатной тем­пературе.

Применяют галлий в полупроводниковой технике в качестве легирующей примеси для германия, он входит в состав низкотемпературных припоев. Сплавы индия с галлием с температурой плав­ления ниже комнатной используют как жидкие проводниковые ма­териалы для нанесения электродов на различные диэлектрические и полупроводниковые материалы, а также в качестве жидкого кон­такта в установках шовной контактной сварки при герметизации корпусов микросхем.

Индий In. Индий – серебристо-белый металл с низкой температурой плав­ления.

Используется в качестве акцепторной примеси и контактного материала в производстве транзисторов и полупроводниковых при­боров, а также входит в состав низкотемпературных припоев и жид­ких токопроводящих контактов (например, в установках шовной контактной роликовой сварки).

Олово Sn. Олово – серебристо-белый металл, имеет ярко выраженное круп­нокристаллическое строение. Он обладает следующими свойствами:

- при изгибе палочки олова слышен треск, вызываемый трением кристаллов друг о друга;

- при нормальной температуре олово на воздухе не окисляется;

- под действием воды не изменяется;

- разведенные кислоты действуют на олово медленно;

- устойчиво при температуре выше 13,2°С.

Олово, кристаллизующееся в тетрагональную систему с плотностью 7310 кг/м3, называют белым оловом. Белое олово обладает сле­дующими свойствами:

- предел прочности изменяется от 16 до 38 МПа;

- при низких температурах на белом олове появляются серые пятна (выделение второй модификации серого олова с плотностью 5600 кг/м3), которые называют оловянной чумой;

- при нагревании серое олово снова переходит в белое;

- если нагреть олово до температуры выше 160°С, то оно перехо­дит в третью (ромбическую) модификацию и становится хрупким.

Олово является мягким, тягучим металлом, из которого в результате прокатки получают тонкую фольгу. Для облегчения прокатки и улучшения механической прочности в олово вводят присадки (до 15% свинца и до 1% сурьмы). Тонкую оловянную фольгу (6...8 мкм) с присадками применяют в производстве некоторых типов конден­саторов. Оловянно-свинцовую фольгу толщиной 20...40 мкм приме­няют в качестве обкладок в слюдяных конденсаторах.

Кадмий Cd. Кадмий – серебристо-белый металл, являющийся постоянным составным элементом цинка в его рудах и добываемый как побоч­ный продукт при получении цинка. Как и цинк, кадмий подверга­ется электролитической очистке. Наиболее чистый металл содер­жит 99,997% кадмия. Он входит в состав ряда припоев и бронз.

Применяется для изготовления фотоэлементов, покрытий СВЧ волноводов вместо серебра, гальванических элементов, а также в атомных реакторах в качестве замедлителя.

Свинец Рb. Свинец – мягкий металл сероватого цвета с высоким удельным электрическим сопротивлением и крупнокристаллическим строением. Его кристаллы становятся видны при протирании азотной кислотой даже невооруженным глазом. Он обладает следующими свойствами:

- на свежем срезе имеет сильный металлический блеск, но быстро тускнеет на воздухе вследствие поверхностного окисления;

- высокая пластичность;

- низкая прочность (предел прочности при растяжении σр пример­но 14 МПа при относительном удлинении ∆ l/l более 55%);

- высокая коррозионная стойкость (свинец не пропускает воду);

свинец и его соединения ядовиты.

Благодаря высокой коррозионной стойкости свинец в больших количествах применяют для изготовления кабельных оболочек, за­щищающих кабель от влаги. Его используют также для изготовле­ния плавких предохранителей, пластин свинцовых аккумуляторов и как материал, поглощающий рентгеновские лучи.

Цинк Zn. Цинк – пластичный металл светлого цвета, который обладает следующими свойствами:

- при нормальной температуре сравнительно стойкий к коррозии;

- при нагревании до температуры 200°С становится хрупким.

Получают металлургическими методами с последующей электро­литической очисткой. Высокоочищенный металл содержит 99,99% цинка.

Цинк применяют в качестве защитного покрытия для других металлов (например, железа), в фотоэлементах, а также для метал­лизации бумаги в металлобумажных конденсаторах. Нанесение металлического слоя на бумагу производят в процессе испарения цинка в вакууме при температуре примерно 600°С.

 







Дата добавления: 2015-04-19; просмотров: 7216. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия