Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Запись двойственной задачи в общем случае





Дополнительные правила записи двойственной задачи получим, сводя несимметричные условия прямой задачи к симметричным.

1.Среди условий прямой задачи есть равенство (k -е условие). Заменив k- е условие-равенство двумя неравенствами

Û

приходим к симметричному случаю. Если новым неравенствам сопоставить неотрицательные двойственные переменные и , то в соответствии с вышеописанными правилами запишем критерий и неравенства двойственной задачи

После вынесения общих множителей за () получаем

Так как и входят в модель только в виде разности, то можно произвести замену и иметь одну двойственную переменную, соответствующую равенству прямой задачи, но при этом она не будет ограничена по знаку.

2.Переменная xk в прямой задаче не ограничена по знаку. Заменим эту переменную всюду в модели разностью неотрицательных переменных:

Этим переменным в двойственной задаче будут соответствовать 2 неравенства

       
   
 

которые эквивалентны равенству

Итак, в общем случае 5-е правило записи двойственной задачи включает 4 пункта, представленные в следующей таблице

Правило Прямая задача Двойственная задача
5.1 Переменная xj ³0 j -е условие ³
5.2 Переменная xj не ограничена по знаку j -е условие =
5.3 i- е условие £ Переменная Ui ³0
5.4 i- е условие = Переменная Ui не ограничена по знаку

Эти правила предполагают, что прямая задача записана с критерием на максимум и неравенствами в виде “меньше или равно”. Очевидно, что в симметричном случае из 5-го правила применяются только пункты 5.1.и 5.3.

Пример. Прямая задача: Преобразовав:

L= 2 x 1 +x 2- x 4 + 3 x 5 ® max; L= 2 x 1 + x 2- x 4 + 3 x 5 ® max;

5 x 1 - 7 x 2 + 4 x 3 + 2 x 5£ 8; U 1: 5 x 1 - 7 x 2 + 4 x 3 + 2 x 5£ 8;

3 x 2 + 6 x 3 - 2 x 4³ 10; U 2: - 3 x 2 - 6 x 3 + 2 x 4£ - 10;

x 1 + 4 x 2 +x 3 - 3 x4= 5; U 3: x 1 + 4 x 2 + x 3 - 3 x 4 = 5;

9x1 - x 2 + 5 x 4 - 4 x 5³16; U 4: - 9x1 + x 2 - 5 x 4 + 4 x 5£ - 16;

x 1³0, x 3³0, x 4³0. x 1³0, x 3³0, x 4³0.

В соответствии с правилами для общего случая записываем модель двойственной задачи

= 8 U 1 - 10 U 2 + 5 U 3 - 16 U 4 ® min;

5 U 1 +U 3 - 9 U 4 ³ 2;

- 7 U 1 - 3 U 2 + 4 U 3 + U 4 = 1;

4 U 1 - 6 U 2 + U 3 ³ 0;

2 U 2 - 3 U 3 - 5 U 4³ - 1;

2 U 1 + 4 U 4 = 3;

U 1³ 0, U 2³ 0, U 4³ 0.








Дата добавления: 2015-04-19; просмотров: 358. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия