Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Учет двусторонних ограничений





В общем случае на переменные могут накладываться двусторонние ограничения aj£ xj£bj. Каждое такое ограничение порождает 2 равенства в канонической модели и, следовательно, увеличивает размер симплекс-таблицы на 2 строки. Если сместить начало отсчета на aj, ограничение примет вид 0 £ xj£ dj, где dj = bj - aj, и таблица будет увеличиваться только на 1 строку. Однако, если такие ограничения накладываются на многие переменные, увеличение размеров симплекс-таблицы будет значительным.

Идея метода с двусторонними ограничениями состоит в учете ограничения сверху аналогично условию xj³ 0. Выполнение этого условия обеспечивается выбором направляющей строки, т.е. значения вводимой переменной, равного q0. Чтобы переменные в новом базисном решении помимо неотрицательности были не больше dj, усложним выбор значения вводимой переменной. Предельное значение q по условию неотрицательности обозначим , а предельное значение по ограничению сверху ­– . Верхнего значения могут достигать только переменные с отрицательными коэффициентами air. Приравнивая эти переменные значениям dj, получаем формулу для вычисления : q0 =min()

Соответственно и направляющая строка выбирается по q0. В симплекс-таблице вместо одного столбца для q удобнее иметь два: для q и q ’’. Кроме того, добавляется одна строка (сверху), в которой записываются значения небазисных переменных: выводимая из базисного решения переменная xk равна нулю, если < , и равна dk в противном случае.

Изменяется также признак оптимальности базисного решения. Условие Δ j ³0 остается в силе только для нулевых небазисных переменных. К нему добавляется условие для небазисных переменных на верхнем уровне: Δ j £0. Поэтому в случае неоптимальности текущего решения направляющий столбец выбирается по max|Δ j | из отрицательных для xk=0 и положительных для xk = dk. Симплекс-преобразование (пересчет таблицы) не изменяется.

Модифицированный алгоритм

Этот алгоритм отличается тем, что основан на обратной матрице базиса. Для простоты рассмотрим случай с односторонними ограничениями на переменные. Тогда небазисные переменные равны нулю, а система условий задачи принимает вид AbXb=B,

где Ab базисная матрица m x m, Xb – вектор базисных переменных. Тк определитель базисной матрицы не равен нулю, существует обратная матрица . Базисные переменные можно вычислять по формуле

Относительные оценки также можно определять по обратной матрице. Для этого выполним ряд преобразований: Вектор найдем из разложения вектора условий Aj по базису Получаем:

Произведение не зависит от индекса j, поэтому окончательно будем иметь , где

Таким образом, для решения задачи модифицированным симплекс-методом достаточно вести не всю таблицу, а только обратную матрицу. При единичном начальном базисе обратную матрицу вычислять не надо – она также единичная. Имея обратную матрицу текущего решения, вычисляем сначала вектор , а затем оценки небазисных переменных. Если признак оптимальности не выполняется, находим минимальную оценку Коэффициенты разложения air вектора Аr по текущему базису находятся по формуле: где Ar – вектор условий вводимой переменной xr, который берется из канонической модели. Столбец ar добавляем к обратной матрице в качестве направляющего. Далее действуем, как в стандартном методе, то есть для положительных air вычисляем q, находим направляющую строку и направляющий элемент. Затем получаем новую обратную матрицу путем симплекс-преобразования текущей обратной матрицы. После выполнения признака оптимальности находим решение.

Преимущество этого метода перед стандартным тем выше, чем больше разница между общим числом переменных и числом базисных переменных канонической модели. Однако обнаружение неразрешимости задачи из-за неограниченности критерия может происходить на более поздних итерациях: только тогда, когда соответствующее условие имеет место в направляющем (добавляемом) столбце.

Новую обратную матрицу можно находить не только симплекс преобразованием старой, но и по формуле

,

где E k – почти единичная матрица (только k -й столбец отличается от единичного). Если эту формулу применять на всех итерациях, то для l -й обратной матрицы получим

.

Такое представление обратной матрицы называют мультипликативным. По сравнению с обычным симплекс-преобразованием оно уменьшает объем вычислений на каждой итерации и тем сильнее, чем меньше плотность матрицы условий.








Дата добавления: 2015-04-19; просмотров: 503. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия