Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметрический анализ коэффициентов линейной формы





Рассмотрим 3 варианта параметрирования, отличающ. своими возможностями.

1. Коэффициенты критерия изменяются линейно от параметра:

C(l)=C+ l V, а вектор V задается аналогично случаю изменения ресурсов.

Задача параметрирования: (С+lV)TX®max AX £ B X ³ 0.

ДЗ: BTU®min ATU ³ C+lV U ³ 0

Она представляет собой задачу параметрирования вектора ограничений, решение которой может быть получено с помощью параметрического анализа вектора ограничений. В результате найдем диапазон изменения параметра l (0 £ l < ), в котором базис двойственной задачи остается неизменным. В строке Z оптимальной таблицы двойственной задачи находятся переменные прямой задачи. Но значения zj зависят только от базиса, поэтому в найденном диапазоне l оптимальное решение также не меняется. Изменяться будет только критерий. При достижении критического значения l произойдет смена базиса (оптимальной вершины), а значит, и оптимального решения прямой задачи. Проследить дальнейшее изменение решения можно после повторного решения двойственной задачи с вектором

Такое поведение следует и из геометрических представлений. Изменение коэффициентов линейной формы изменяет наклон линии уровня критерия, но не влияет на допустимое множество. При наличии критических значений l изменение коэффициентов приводит к скачкооб­разному изменению оптимального решения – переходу из вершины в вершину (смежную).

2. Для небазисных переменных можно определить диапазон изменения Cj, в котором оптимальное решение остается неизменным. Пока при изменения Cj все Δj ³0 оптимальное решение исходной задачи сохраняет свой статус. Так как Δ j = Zj-Cj,

то уменьшение Cj не может изменить знак оценки. Поэтому интерес представляет увеличение Cj. Пусть + ej, ej ³.0. Тогда Δ j = Zj – Cj - ej = Δ j - ej ³ 0.

Отсюда следует, что при ej £ Δj исходное решение остается оптимальным.

3. Этот вариант основан на формуле вычисления относительных оценок в модифицированном симплекс-методе: .

Она позволяет исследовать влияние изменения любых коэффициентов Сj. В общем случае эти коэффициенты являются некоторыми функциями параметра l: Cj (l). Тогда условия оптимальности запишутся в виде

Здесь обратная матрица соответствует оптимальному базису. Пока при изменении коэффициентов (т.е. l) эти неравенства выполняются, оптимальное решение не изменяется. Значение l, при котором хотя бы одно из условий становится равенством, и будет критическим. Практически оно находится так: каждое условие записывается как равенство и определяются его корни; из всех корней выбирается наименьшее положительное. Это и будет

Данный вариант параметрирования пригоден как для линейных, так и нелинейных зависимостей от параметра. Однако в последнем случае его применение ограничено возможностью нахождения корней нелинейного уравнения.








Дата добавления: 2015-04-19; просмотров: 393. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия