Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметрический анализ вектора ограничений





Пусть оптимальное решение X* получено для вектора В. Как будет изменяться оптимальное решение при изменении правой части, заданной параметрически B (l)? Рассмотрим случай линейной зависимости: B (l)= B + l V, где l³0 – параметр, определяющий величину изменения вектора ограничений;

V – вектор размерности m, определяющий направление и относительную скорость изменения компонентов вектора ограничений. Задается ЛПР исходя из прогноза возможных изменений ресурсов. Пример: то есть ожидается одновременное уменьшение 1 и 3 ресурсов и увеличение 2 ресурса. При этом абсолютная величина изменения 1 ресурса в 3 раза, а 2 в полтора раза >, чем 3.

Для любого базисного решения условия задачи AX=B можно записать в виде

A B X B+ A H X H= B, где индексы “B” и “H” обозначают базисные и небазисные векторы (матрицы). Так как небазисные переменные равны нулю, то отсюда следует

A B X B= В и, в частности, для оптимального решения A *B X *B= В. Так как мы исходим из наличия решения X *, то базисная матрица - неособенная и существует обратная к ней матрица , .

Если заменить в B на B (l) при l =0, то ничего не изменится. При невырожденном оптимальном решении малое изменение B (l >0 мало ) не изменяет базис: оптимальная вершина хотя и смещается, но образуется теми же ограничениями. Поэтому в данном случае изменяется только оптимальное решение. Оптимальное решение при l >0 обозначим X**. Тогда для малых l: , откуда находим изменяемое оптимальное решение или где

Таким образом, при линейном характере изменений ресурсов оптимальные значения переменных также меняются линейно. Это справедливо до тех пор, пока не происходит смена базиса. В невырожденном решении всегда найдется l >0, при котором базис не меняется. При неотрицательном векторе P возрастание l не может привести к уменьшению какой-либо базисной переменной и, значит, к смене базиса. В этом случае формула справедлива для любых l >0. Такая ситуация показана на рис, где изменение b 1и b 2в направлении стрелок не приводит к смене базиса (вершины, в которой достигается оптимальное решение).

Если же среди компонент вектора Р есть отрицательные, то соответствующие базисные переменные с увеличением l будут уменьшаться. Если хотя бы одна из переменных обратится в нуль, то произойдет смена базиса и, следовательно, изменится обратная матрица. Формула с исходными базисным решением и вектором P - несправедлива. На рис. оптимальная вершина сначала образована ограничениями по b 1и b 2, а затем – ограничениями по b 1и b 3.

Значение l, при котором происходит смена базиса (базисного решения), - критическое. Оно определяется по формуле где pi – компоненты вектора Р. Исходное решение можно использовать для определения изменяемых решений только в диапазоне . Максимальное изменение правой части

Если диапазон изменения правой части недостаточен, то для его расширения необходимо заново решить задачу с вектором B 1= BB max.Получаем новое оптимальное решение, новую обратную матрицу и на их основе снова проводится параметрирование для B (l)= B 1+ l 1 V. Повторяя эти действия, можно охватить весь желаемый диапазон изменения ресурсов. При этом соотношение компонент (но не знаков!) в векторе V может остаться исходным или измениться (зависимость от параметра l на всем исследованном диапазоне будет кусочно-линейной).








Дата добавления: 2015-04-19; просмотров: 636. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия