Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметрический анализ вектора ограничений





Пусть оптимальное решение X* получено для вектора В. Как будет изменяться оптимальное решение при изменении правой части, заданной параметрически B (l)? Рассмотрим случай линейной зависимости: B (l)= B + l V, где l³0 – параметр, определяющий величину изменения вектора ограничений;

V – вектор размерности m, определяющий направление и относительную скорость изменения компонентов вектора ограничений. Задается ЛПР исходя из прогноза возможных изменений ресурсов. Пример: то есть ожидается одновременное уменьшение 1 и 3 ресурсов и увеличение 2 ресурса. При этом абсолютная величина изменения 1 ресурса в 3 раза, а 2 в полтора раза >, чем 3.

Для любого базисного решения условия задачи AX=B можно записать в виде

A B X B+ A H X H= B, где индексы “B” и “H” обозначают базисные и небазисные векторы (матрицы). Так как небазисные переменные равны нулю, то отсюда следует

A B X B= В и, в частности, для оптимального решения A *B X *B= В. Так как мы исходим из наличия решения X *, то базисная матрица - неособенная и существует обратная к ней матрица , .

Если заменить в B на B (l) при l =0, то ничего не изменится. При невырожденном оптимальном решении малое изменение B (l >0 мало ) не изменяет базис: оптимальная вершина хотя и смещается, но образуется теми же ограничениями. Поэтому в данном случае изменяется только оптимальное решение. Оптимальное решение при l >0 обозначим X**. Тогда для малых l: , откуда находим изменяемое оптимальное решение или где

Таким образом, при линейном характере изменений ресурсов оптимальные значения переменных также меняются линейно. Это справедливо до тех пор, пока не происходит смена базиса. В невырожденном решении всегда найдется l >0, при котором базис не меняется. При неотрицательном векторе P возрастание l не может привести к уменьшению какой-либо базисной переменной и, значит, к смене базиса. В этом случае формула справедлива для любых l >0. Такая ситуация показана на рис, где изменение b 1и b 2в направлении стрелок не приводит к смене базиса (вершины, в которой достигается оптимальное решение).

Если же среди компонент вектора Р есть отрицательные, то соответствующие базисные переменные с увеличением l будут уменьшаться. Если хотя бы одна из переменных обратится в нуль, то произойдет смена базиса и, следовательно, изменится обратная матрица. Формула с исходными базисным решением и вектором P - несправедлива. На рис. оптимальная вершина сначала образована ограничениями по b 1и b 2, а затем – ограничениями по b 1и b 3.

Значение l, при котором происходит смена базиса (базисного решения), - критическое. Оно определяется по формуле где pi – компоненты вектора Р. Исходное решение можно использовать для определения изменяемых решений только в диапазоне . Максимальное изменение правой части

Если диапазон изменения правой части недостаточен, то для его расширения необходимо заново решить задачу с вектором B 1= BB max.Получаем новое оптимальное решение, новую обратную матрицу и на их основе снова проводится параметрирование для B (l)= B 1+ l 1 V. Повторяя эти действия, можно охватить весь желаемый диапазон изменения ресурсов. При этом соотношение компонент (но не знаков!) в векторе V может остаться исходным или измениться (зависимость от параметра l на всем исследованном диапазоне будет кусочно-линейной).








Дата добавления: 2015-04-19; просмотров: 636. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия