Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

D-постановка





Построение аппроксимирующей задачи основано так же на кусочно-линейном приближении, но меняется уравнение сетки. По узлам сетки вычисляются расстояния между смежными узлами (длины интервалов) djk = Xjk +1Xjk и уравнение сетки записывается в виде xj = dj + ; 0 £ yjk £ 1, где yjk – новые переменные.

Из представления переменной следует: xj = dj, когда " yjk =0; xj находится в первом интервале, когда yj 1 Î (0, 1), остальные yjk =0; xj находится во втором интервале, когда yj 1=1, yj 2 Î (0, 1), остальные yjk =0; xj находится в k -ом интервале, когда yj 1 = yj 2 =... = yjk -1 = 1, 0 £ yjk £ 1, остальные yjk =0.

Таким образом, для правильной аппроксимации должно выполняться установленное соответствие между значениями переменной xj и yjk. Это требование аналогично правилу смежных весов. При ином представлении значения xj будет нарушена кусочно-линейная аппроксимация функции. Для аппроксимации нелинейной составляющей функции критерия вычисляются разности ее значений в смежных узлах D jk = fj (Xjk +1) – fj (Xjk), с помощью которых записывается аппроксимирующая функция Функция, аппроксимирующая критерий:

Аналогично аппроксимируются ограничения jij (xj): Как и в l-постановке, если имеет место задача выпуклого программирования, то требования к переменным yjk выполняются автоматически и полученное решение будет приближенным глобальным решением исходной задачи. В противном случае, необходимо придерживаться правила ограниченного ввода относительно переменных yjk: если первые k переменных равны единице, вводить можно только yjk +1.







Дата добавления: 2015-04-19; просмотров: 502. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия