Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задачи дробно-линейного программирования





Если целевая функция представляет собой отношение линейных функций, а все условия линейные, то задача относится к классу задач дробно-линейного программирования. Целевая функция имеет вид:

Такая функция легко преобразуется в линейную, если ее знаменатель при всех допустимых значениях переменных строго положителен. Для этого введем новую переменную r следующим образом:

При оговоренном условии она может быть только больше нуля. Тогда функция принимает вид Замена: -> Получили линейную функцию от n неотрицательных переменных yj и одной положительной переменной r. Эта функция должна рассматриваться вместе с условием: или после замены

Чтобы завершить построение эквивалентной линейной модели, следует ограничения задачи записать в новых переменных. Для этого умножим обе части каждого ограничения

на r: (замена) ->

В результате преобразований имеем задачу ЛП. Получив ее решение одним из методов ЛП, вычисляем исходные переменные:

Возможность перехода к линейной задаче геометрически обусловлена тем, что линии уровня дробно-линейной функции описываются линейным уравнением. Пусть . Тогда: или - уравнения уровня, с изменением они не перемещаются параллельно, а поворачиваются вокруг мн-ва вращения– это мн-во точек размерности n -2, образов. пересечением нулевых линий уровня числителя и знаменателя:

Пример: Представим графически следующую задачу

; 3x1 + 2x2 ³ 6, 0£ x1 £ 3, 0£ x2 £ 3.

Ур-я нулевых линий уровня числителя и знаменателя образуют систему:

из которой находим точку вращения: x 1= x 2=1/3. На рис. это точка А. Нулевые линии показаны пунктиром, а направление поворота, в котором целевая функция возрастает, – стрелками. Отсюда ясно, что оптимальное решение достигается в вершине B:








Дата добавления: 2015-04-19; просмотров: 881. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия