Студопедия — Автоматизация управления траекторией движения рабочего органа проходческого комбайна
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Автоматизация управления траекторией движения рабочего органа проходческого комбайна






 

Проходка горных выработок по слабым горным породам выполняется проходческими комбайнами с различным типом исполнительных органов. Эти исполнительные органы могут быть стреловыми и буровыми. Проходческие комбайны с буровым исполнительным органом за счет его кинематики обеспечивают проходку горных выработок с постоянной формой сечения, поэтому не требуют управления траекторией этого органа.

 
 

В свою очередь проходческие комбайны со стреловым исполнительным органом могут обеспечивать проходку выработок любой формы сечения, а для этой цели они оборудуются исполнительными органами с регулируемой траекторией движения. Схема такого комбайна и траектория движения его исполнительного органа при проходке выработки трапециевидного сечения показана на рис. 45. Для обработки забоя указанной формы сечения исполнительный орган этого комбайна (стрела) должен совершать угловые перемещения относительно забоя выработки, как в вертикальной, так и в горизонтальной плоскости. В действительности эти угловые перемещения совершаются этим органом относительно продольной оси комбайна. При этом в вертикальной плоскости исполнительный орган перемещается на угол «α», а в горизонтальной соответственно на угол «β».

Рис. 45. Сема проходки выработки трапециевидногосечения комбайном со

стреловым исполнительным органом.

 

Порядок обработки забоя исполнительным органом при работе комбайна следующий. Первоначально фреза исполнительного органа комбайна перемещается в нижний или верхний угол выработки, после чего механизмом перемещения комбайна он внедряется в забой. После этого внедрения (в нижней части выработки) происходит горизонтальное перемещение фрезы. При этом постоянно контролируется угол β этого перемещения стрелы.

При достижении заданной величины горизонтального отклонения стрелы исполнительного органа комбайна по данной (нижней) полосе обработки забоя, подается команда на ее вертикальное перемещение на следующую полосу. При этом так же контролируется величина углу α. Таким образом, при проходке выработки проходческим комбайном со стреловым исполнительным органом присходит послойная обработка забоя его фрезой с постоянным контролем заданных угловых параметров β и α.

 
 

Описанный принцип управления траекторией движения стрелового исполнительного органа проходческого комбайна успешно был реализован только в микропроцессорном варианте системы автоматического управления. Структура такой системы показана на рис. 46.

Рис. 46. Структура системы автоматического управления траекторией

исполнительного органа проходческого комбайна

 

Как и прежде, основу такой системы составляет микропроцессорный контроллер с портами аналогового и дискретного ввода, а так же с портами дискретного и импульсного вывода. К порту дискретного ввода подключены кнопки «пуск» и «стоп», а к порту аналогового ввода подключены датчики Dα и Dβ углового перемещения исполнительного органа комбайна. К порту дискретного вывода подключены исполнительные электрогидроклапаны ЭГК1, ЭГК2, ЭГК3, ЭГК4, с помощью которых происходит управление угловым положением исполнительного органа комбайна (ИОК). Для внедрения фрезы в забой включают на заданное время привод механизма подачи комбайна (ППК). Время внедрения контролируется таймером контроллера.

Система работает по алгоритму, представленному на рис. 47.

 

 

После запуска этого алгоритма производится ввод в память контроллера заданных значений угловых параметров положения исполнительного органа комбайна на каждой полосе обработки забоя и число полос обработки забоя этой фрезой., а так же времени работы привода подачи комбайна при внедрении в забой. Затем параметру I первоначально присваивается значение 1, это означает переход к очередной (первой) полосе обработки забоя. После этого производится включение на заданное время через таймерный порт привода подачи комбайна на забой, в результате чего фреза исполнительного органа внедряется в забой. Этот процесс продолжается до тех пор, пока фактическое время работы этого привода не сравняется с заданным. Как только это произойдет, привод подачи комбайна отключается и алгоритм переходит к циклу управления положением фреза на заданно полосе обработки забоя.

В этом цикле первоначально производится опрос датчика Dβ. После этого показания датчика сравниваются с заданным значением параметра β на данной полосе обработки забоя. Если отклонение Δβ (разность заданного и фактического значений этого параметра) окажется равным нулю, то происходит переход к опросу показаний датчика по следующему параметру α. Если же отклонение Δβ не равно нулю, то включается один из электрогидроклапанов ЭГК1 или ЭГК2, управляющих перемещением в горизонтальной плоскости исполнительного органа комбайна в сторону зависящую от знака этой разности. В этом цикле происходит цвозврат на опрос состояния датчика Dβ до тех пор, пока отклонение Δβ не будет равным нулю. Только после этого выключаются, включенные электрогидроклааны, и происходит переход к контуру аналогичного регулирования, но уже по параметру α. Как только и этот процесс закончится, то к параметру I добавляется единица, что означает переход фрезы исполнительного органа комбайна на следующую полосу обработки забоя.

В процессе каждого суммирования параметра I результат сравнивается с числом обрабатываемых полос N. Если суммарный параметр I окажется больше числа N, то это признак конца обработки забоя при данном внедрении в него фрезы исполнительного органа комбайна. Истинность этого условия переводит алгоритм к повторному внедрению фрезы в массив забоя, в результате чего цикл отработки забоя продолжается.

 

 







Дата добавления: 2015-04-19; просмотров: 565. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия