Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обычный алгоритм Монте-Карло интегрирования




Предположим, требуется вычислить определённый интеграл

Рассмотрим случайную величину , равномерно распределённую на отрезке интегрирования . Тогда также будет случайной величиной, причём её математическое ожидание выражается как
, где — плотность распределения случайной величины , равная на участке .

Таким образом, искомый интеграл выражается как
.

Но матожидание случайной величины можно легко оценить, смоделировав эту случайную величину и посчитав выборочное среднее.

Итак, бросаем точек, равномерно распределённых на , для каждой точки вычисляем . Затем вычисляем выборочное среднее: .

В итоге получаем оценку интеграла:

Точность оценки зависит только от количества точек .

Этот метод имеет и геометрическую интерпретацию. Он очень похож на описанный выше детерминистический метод, с той разницей, что вместо равномерного разделения области интегрирования на маленькие интервалы и суммирования площадей получившихся «столбиков» мы забрасываем область интегрирования случайными точками, на каждой из которых строим такой же «столбик», определяя его ширину как , и суммируем их площади.

Геометрический алгоритм Монте-Карло интегрирования

Рисунок 3. Численное интегрирование функции методом Монте-Карло

Для определения площади под графиком функции можно использовать следующий стохастический алгоритм:

· ограничим функцию прямоугольником (n-мерным параллелепипедом в случае многих измерений), площадь которого можно легко вычислить;

· «набросаем» в этот прямоугольник (параллелепипед) некоторое количество точек ( штук), координаты которых будем выбирать случайным образом;

· определим число точек ( штук), которые попадут под график функции;

· площадь области, ограниченной функцией и осями координат, даётся выражением

Для малого числа измерений интегрируемой функции производительность Монте-Карло интегрирования гораздо ниже, чем производительность детерминированных методов. Тем не менее, в некоторых случаях, когда функция задана неявно, а необходимо определить область, заданную в виде сложных неравенств, стохастический метод может оказаться более предпочтительным.







Дата добавления: 2015-04-19; просмотров: 499. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.002 сек.) русская версия | украинская версия