Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрия





1. Свойства равнобедренного треугольника.

2. Свойства точек, равноудаленных от концов отрезка.

3. Признаки параллельности прямых.

4. Сумма углов треугольника. Сумма внешних углов выпуклого многоугольника.

5. Признаки параллелограмма, его свойства.

6. Окружность, описанная около треугольника.

7. Окружность, вписанная в треугольник.

8. Касательная к окружности и ее свойство.

9. Измерение угла, вписанного в окружность.

10. Признаки подобия треугольников.

11. Теорема Пифагора.

12. Формулы площадей параллелограмма, треугольника, трапеции.

13. Формула расстояния между двумя точками плоскости. Уравнение окружности.

14. Признак параллельности прямой и плоскости.

15. Признак параллельности плоскостей.

16. Теорема о перпендикулярности прямой и плоскости.

17. Перпендикулярность двух плоскостей.

18. Теоремы о параллельности и перпендикулярности плоскостей.

19. Теорема о трех перпендикулярах.

ОСНОВНЫЕ УМЕНИЯ И НАВЫКИ.

 

Экзаменующийся должен уметь:

1. Производить арифметические действия над числами, заданными в виде обыкновенных и десятичных дробей; с требуемой точностью округлять данные числа и результаты вычислений; пользоваться калькуляторами или таблицами для вычислений.

2. Проводить тождественные преобразования многочленов, дробей, содержащих переменные, выражений, содержащих степенные, показательные, логарифмические и тригонометрические функции.

3. Строить графики линейной, квадратичной, степенной, показательной, логарифмической и тригонометрических функций.

4. Решать уравнения и неравенства первой и второй степени; уравнения и неравенства, приводящиеся к ним; решать системы уравнений и неравенств первой и второй степени и приводящиеся к ним. Сюда, в частности, относятся простейшие уравнения и неравенства, содержащие степенные, показательные, логарифмические и тригонометрические функции.

5. Решать задачи на составление уравнений и систем уравнений.

6. Изображать геометрические фигуры на чертеже и производить простейшие построения на плоскости.

7. Использовать геометрические представления при решении алгебраических задач, а методы алгебры и тригонометрии - при решении геометрических задач.

8. Проводить на плоскости операции над векторами (сложение и вычитание векторов, умножение вектора на число) и пользоваться свойствами этих операций.

9. Пользоваться понятием производной при исследовании функций на возрастание (убывание), на экстремумы и при построении графиков функций.







Дата добавления: 2015-03-11; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия