Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Геометрия





1. Свойства равнобедренного треугольника.

2. Свойства точек, равноудаленных от концов отрезка.

3. Признаки параллельности прямых.

4. Сумма углов треугольника. Сумма внешних углов выпуклого многоугольника.

5. Признаки параллелограмма, его свойства.

6. Окружность, описанная около треугольника.

7. Окружность, вписанная в треугольник.

8. Касательная к окружности и ее свойство.

9. Измерение угла, вписанного в окружность.

10. Признаки подобия треугольников.

11. Теорема Пифагора.

12. Формулы площадей параллелограмма, треугольника, трапеции.

13. Формула расстояния между двумя точками плоскости. Уравнение окружности.

14. Признак параллельности прямой и плоскости.

15. Признак параллельности плоскостей.

16. Теорема о перпендикулярности прямой и плоскости.

17. Перпендикулярность двух плоскостей.

18. Теоремы о параллельности и перпендикулярности плоскостей.

19. Теорема о трех перпендикулярах.

ОСНОВНЫЕ УМЕНИЯ И НАВЫКИ.

 

Экзаменующийся должен уметь:

1. Производить арифметические действия над числами, заданными в виде обыкновенных и десятичных дробей; с требуемой точностью округлять данные числа и результаты вычислений; пользоваться калькуляторами или таблицами для вычислений.

2. Проводить тождественные преобразования многочленов, дробей, содержащих переменные, выражений, содержащих степенные, показательные, логарифмические и тригонометрические функции.

3. Строить графики линейной, квадратичной, степенной, показательной, логарифмической и тригонометрических функций.

4. Решать уравнения и неравенства первой и второй степени; уравнения и неравенства, приводящиеся к ним; решать системы уравнений и неравенств первой и второй степени и приводящиеся к ним. Сюда, в частности, относятся простейшие уравнения и неравенства, содержащие степенные, показательные, логарифмические и тригонометрические функции.

5. Решать задачи на составление уравнений и систем уравнений.

6. Изображать геометрические фигуры на чертеже и производить простейшие построения на плоскости.

7. Использовать геометрические представления при решении алгебраических задач, а методы алгебры и тригонометрии - при решении геометрических задач.

8. Проводить на плоскости операции над векторами (сложение и вычитание векторов, умножение вектора на число) и пользоваться свойствами этих операций.

9. Пользоваться понятием производной при исследовании функций на возрастание (убывание), на экстремумы и при построении графиков функций.







Дата добавления: 2015-03-11; просмотров: 484. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия