Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Арифметика, алгебра и начала анализа





1. Натуральные числа (N). Простые и составные числа. Делитель, кратное. Наибольший общий делитель, наименьшее общее кратное.

2. Признаки делимости на 2, 3, 5, 9, 10.

3. Целые числа (Z). Рациональные числа (Q), их сложение, вычитание, умножение и деление. Сравнение рациональных чисел.

4. Действительные числа (R), их представление в виде десятичных дробей.

5. Изображение чисел на прямой. Модуль действительного числа, его геометрический смысл.

6. Числовые выражения. Выражения с переменными. Формулы сокращенного умножения.

7. Степень с натуральным и рациональным показателем. Арифметический корень.

8. Логарифмы, их свойства.

9. Одночлен и многочлен.

10. Многочлен с одной переменной. Корень многочлена на примере квадратного трехчлена.

11. Понятие функции. Способы задания функции. Область определения. Множество значений функции. График функции. Возрастание и убывание функций; периодичность, четность, нечетность.

12. Достаточное условие возрастания (убывания) функции на промежутке. Понятие экстремума функции.

13. Необходимое условие экстремума функции (теорема Ферма). Достаточное условие экстремума.

14. Наибольшее и наименьшее значение функции на промежутке.

15. Определение и основные свойства функций: линейной, квадратичной у=ах2 + bх+с, степенной у=ахn (n N), у=k/x, показательной у=ах, а >0, логарифмической, тригонометрических функций (у=sin x; y=cos x; y=tg x), арифметического корня.

16. Уравнение. Корни уравнения. Понятие о равносильных уравнениях.

17. Неравенства. Решения неравенства. Понятие о равносильных неравенствах.

18. Система уравнений и неравенств. Решения системы.

19. Арифметическая и геометрическая прогрессия. Формула п-го члена и суммы первых п членов арифметической прогрессии. Формула п-го члена и суммы первых п членов геометрической прогрессии.

20. Синус и косинус суммы и разности двух аргументов (формулы).

21. Преобразование в произведение сумм ; .

22. Определение производной. Ее физический и геометрический смысл.

23. Производные функций у=sin x; y=cos x; y=tg x; у=ах; у=хn (n N); y=ln x.







Дата добавления: 2015-03-11; просмотров: 979. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия