Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывные случайные величины





Определение. Непрерывной называют случайную величину Х, функцию распределения которой F (x) можно представить в виде

Функцию р (х) называют плотностью распределения (вероятностей) случайной величины X.

Плотность распределения случайной величины обычно является непрерывной (за исключением, быть может, конечного числа точек) функцией. Следовательно, функция распределения для непрерывной случайной величины является непрерывной на всей числовой оси и в точках непрерывности плотности распределения p (х) имеет место равенство

p (x) = F' (x)

что следует из свойств интеграла с переменным верхним пределом.

Теорема. Плотность распределения обладает следующими свойствами:

1) ;

2) ;

3) ;

4) в точках непрерывности плотности распределения;

5) .

Доказательство. 1) Утверждение 1 следует из того, что плотность распределения является производной от функции распределения, в силу свойства 1 функции распределения она является неубывающей функцией, а производная неубывающей функции неотрицательна. 2) Второе утверждение следует из свойства 2 функции распределения и свойств несобственного интеграла 3) В частности, при , событие является достоверным, и поэтому справедливо утверждение 3. 4) . Если мало, то 5) Поскольку в силу определения функция распределения случайной величины есть несобственный интеграл от плотности, то она является непрерывной, откуда следует утверждение 5.

 







Дата добавления: 2015-03-11; просмотров: 363. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия