Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Числовые характеристики дискретных случайных величин





Определение. Математическим ожиданием (средним значением) M X дискретной случайной величины X называют сумму произведений значений xi случайной величины и вероятностей pi = P{ Х = xi }, с которыми случайная величина принимает эти значения: . При этом, если множество возможных значений случайной величины X счетно, предполагается, что

т.е. ряд, определяющий математическое ожидание, сходится абсолютно; в противном случае говорят, что математическое ожидание случайной величины X не существует.

Определение. Дисперсией D Х случайной величины X называют математическое ожидание квадрата отклонения случайной величины X от ее среднего значения, т.е.

Дисперсия дискретной случайной величины вычисляется по формуле

Нетрудно видеть, что дисперсия D X имеет размерность квадрата размерности случайной величины X. Для практических же целей удобно иметь величину, характеризующую разброс значений случайной величины вокруг ее математического ожидания, размерность которой совпадает с размерностью X. В качестве такой величины естественно использовать , которую называют средним квадратичным отклонением случайной величины X (иногда также стандартом, или стандартным отклонением).

Определение. k -тым начальным моментом (обычно опускают слово „начальный") mk дискретной случайной величины X называют математическое ожидание от Xk: Определение. k -тым центральным моментом дискретной случайной величины X называют математическое ожидание от k -той степени центрированной случайной величины: Момент первого порядка совпадает с математическим ожиданием, центральный момент первого порядка равен нулю, центральный момент второго порядка является дисперсией. Отметим также, что в теоретических изысканиях рассматривают моменты не обязательно целого порядка k. Мода случайной величины дискретного типа определяется как такое возможное значение хт, для которого Таким образом, мода случайной величины дискретного типа есть ее наиболее вероятное значение в случае, если такое значение единственно. Мода может не существовать, иметь единственное значение (унимодальное распределение)или иметь множество значений (мультимодальное распределение).

Пример 1. Математическое ожидание и дисперсию случайной величины X, распределенной по биномиальному закону (число успехов в n испытаниях по схеме Бернулли с вероятностью успеха р):

Можно посчитать по-другому. Представим число успехов X в n испытаниях по схеме Бернулли в виде где Хi − число успехов в i -м испытании. Нетрудно видеть, что , Значит, в силу свойства 3 . Учитывая, что случайные величины Хi являются независимыми, в силу свойства 4 дисперсии получаем .

Пример 2. Пусть случайная величина X имеет распределение Пуассона. Тогда

Пример 3. Пусть случайная величина X имеет геометрическое распределение:

Определение. Функцией распределения (вероятностей) случайной величины X называют функцию F (x), значение которой в точке х равно вероятности события { X < x }, т.е. события, состоящего из тех и только тех элементарных исходов ω, для которых :

F (x) = P{ X < x }

Обычно говорят, что значение функции распределения в точке х равно вероятности того, что случайная величина X примет значение, меньшее х.

Теорема. Функция распределения обладает следующими свойствами:

1) ;

2) F (x 1) < F (x 2) при x 1 < x 2 (т.е. F (x) − неубывающая функция);

3) , ;

4) ;

5) F (x) = F (x − 0), где (т.е. F (x) − непрерывная слева функция).

Доказательство. 1) Поскольку значение функции распределения в любой точке х является вероятностью, то из свойств вероятности (см. лекция 1) вытекает утверждение 1. 2) Если x 1 < x 2, то событие { X < x 1} включено в событие { X < x 2} и, согласно свойству 3 вероятности, P{ X < x 1} < P{ X < x 2}, т.е. в соответствии с определением выполнено утверждение 2. 3) Пусть x 1,..., xn,... − любая возрастающая последовательность чисел, стремящаяся к +∞. Событие { X < +∞}, с одной стороны, является достоверным, а с другой стороны, представляет собой объединение событий { X < xn }. Отсюда в силу аксиомы непрерывности следует второе равенство в утверждении 3. Аналогично доказывается и первое равенство. 4) Событие { X < x 2} при x 1 < x 2 представляет собой объединение двух непересекающихся событий: { X < x 1} − случайная величина X приняла значение, меньшее x 1, и − случайная величина X приняла значение, лежащее в промежутке [ x 1, x 2). Поэтому в соответствии с аксиомой сложения получаем утверждение 4. 5) Наконец, пусть x 1,..., xn,... − любая возрастающая последовательность чисел, стремящаяся к х. Событие { X < х } является объединением событий { X < хn }. Снова воспользовавшись аксиомой непрерывности, приходим к утверждению 5.

Покажем теперь, как по ряду распределения дискретной случайной величины построить ее функцию распределения F (x). Пусть X − дискретная случайная величина, заданная своим рядом распределения, причем значения x 1, x 2,..., хn расположены в порядке возрастания. Тогда для всех хx 1 событие { X < x } является невозможным и поэтому в соответствии с определением F (x) = 0. Если x 1 < хх 2, то событие { X < х }состоит из тех и только тех элементарных исходов ω,для которых Х (ω) = x 1, и, следовательно, F (x) = p. Аналогично при x 2 < хх 3 событие { X < х } состоит из элементарных исходов ω, для которых либо Х (ω) = х 1, либо Х (ω) = х 2, т.е. { X < x } = { X = x 1} + { X = x 2},а следовательно, F (x) = p 1 + p 2 и т.д. Наконец, при х > хn событие { X < х } достоверно и F (х) = 1.

Таким образом, функция распределения дискретной случайной величины является кусочно постоянной функцией, принимающей на промежутке (−∞, x 1] значение 0, на промежутках (xi, xi + 1], 1 ≤ i < n, − значение p 1 +... + pi и на промежутке (хn, +∞) − значение 1.







Дата добавления: 2015-03-11; просмотров: 475. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия