Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗНЛП – это задача вида





ƒ(x1,x2,…,xn)→opt.

g(x1,x2,…,xn)≤≥=bi; i=1,n (1)

xj≥0; j=1,n;

 

Если система ограничений содержит только уравнения и функции ƒi и gi непрерывны вместе со своими частными производными, то задача является задачей на условный экстремум и решается методом множителей Лагранжа:

1. Рассматриваем дополнительную функцию Лагранжа, вводя набор дополнительных переменных λ1, λ2, … λm

F(λi,xj)=ƒ(x1, x2, …, xn)+ λi (bi-gi (x1, x2, …, xn)).

2. Находим безусловные экстремумы функции F, которые являются решением задачи.

Приближенные методы решения ЗНЛП:

Используя градиентные методы, можно найти решение любой ЗНЛП.

 

Метод Франка-Вульфа:

 

Если ƒ(x1, x2, …, xn)→max и является вогнутой функцией на выпуклом множестве Ω, т.е

При условиях ∑aijxj≤bi ; i=1;m; xj≥0, то применяется следующий алгоритм:

1. Найти исходное допустимое решение задачи

2. Найти градиент функции ƒ

3. Построить функцию

; найти ее максимальное значение, т.е Z(k)

4. По формуле ; - произвольно, или находится как наименьшее решение уравнения

5. Проверить необходимость перехода к последующему допустимому решению, приняв в качестве критерия оценки неравенство

пункт 2, где x(0)(к). В противном случае решение задачи найдено.

Метод штрафных функций:

ƒ(x1, x2, …, xn)→max ƒ вогнутая на Ω Ω: gi(x1, x2,…, xn)≤bi xj≥0, где gi - выпуклые функции.

Алгоритм метода:

1. Найти исходное допустимое решение задачи

2. Выбрать шаг вычислений

3. Найти и

4. По формуле

Определить координаты точки определяющей новое решение задачи.

Где αi(x1,x2,…,xn)=0, если bi-gi(x1,…xn)≥0 и αi(x1,x2,…,xn)=αi,если bi-gi<0 и

αi – весовые коэффициенты.

Начинают итерационный процесс при малых αi, постепенно их увеличивая.

5. Проверяют, удовлетворяют ли координаты найденной точки системе ограничений задачи. Если нет, то переходят к следующему этапу, если да, то определяют необходимость перехода к следующему допустимому решению по формуле

В случае необходимости переходят к этапу 2, в противоположном случае решение найдено.

6. Устанавливают значение весовых коэффициентов и переходят к этапу 4

Замечание: Произвольный выбор значений αi приводит к значительным колебаниям удаленности определяемых точек от области допустимых решений. Этот недостаток устраняется при решении задачи методом Эрроу – Гурвица, согласно которому на очередном шаге числа αi выбирают по формуле:

αi (0) – произвольное положительное число.

 

 







Дата добавления: 2015-04-19; просмотров: 638. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия