Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ЗНЛП – это задача вида





ƒ(x1,x2,…,xn)→opt.

g(x1,x2,…,xn)≤≥=bi; i=1,n (1)

xj≥0; j=1,n;

 

Если система ограничений содержит только уравнения и функции ƒi и gi непрерывны вместе со своими частными производными, то задача является задачей на условный экстремум и решается методом множителей Лагранжа:

1. Рассматриваем дополнительную функцию Лагранжа, вводя набор дополнительных переменных λ1, λ2, … λm

F(λi,xj)=ƒ(x1, x2, …, xn)+ λi (bi-gi (x1, x2, …, xn)).

2. Находим безусловные экстремумы функции F, которые являются решением задачи.

Приближенные методы решения ЗНЛП:

Используя градиентные методы, можно найти решение любой ЗНЛП.

 

Метод Франка-Вульфа:

 

Если ƒ(x1, x2, …, xn)→max и является вогнутой функцией на выпуклом множестве Ω, т.е

При условиях ∑aijxj≤bi ; i=1;m; xj≥0, то применяется следующий алгоритм:

1. Найти исходное допустимое решение задачи

2. Найти градиент функции ƒ

3. Построить функцию

; найти ее максимальное значение, т.е Z(k)

4. По формуле ; - произвольно, или находится как наименьшее решение уравнения

5. Проверить необходимость перехода к последующему допустимому решению, приняв в качестве критерия оценки неравенство

пункт 2, где x(0)(к). В противном случае решение задачи найдено.

Метод штрафных функций:

ƒ(x1, x2, …, xn)→max ƒ вогнутая на Ω Ω: gi(x1, x2,…, xn)≤bi xj≥0, где gi - выпуклые функции.

Алгоритм метода:

1. Найти исходное допустимое решение задачи

2. Выбрать шаг вычислений

3. Найти и

4. По формуле

Определить координаты точки определяющей новое решение задачи.

Где αi(x1,x2,…,xn)=0, если bi-gi(x1,…xn)≥0 и αi(x1,x2,…,xn)=αi,если bi-gi<0 и

αi – весовые коэффициенты.

Начинают итерационный процесс при малых αi, постепенно их увеличивая.

5. Проверяют, удовлетворяют ли координаты найденной точки системе ограничений задачи. Если нет, то переходят к следующему этапу, если да, то определяют необходимость перехода к следующему допустимому решению по формуле

В случае необходимости переходят к этапу 2, в противоположном случае решение найдено.

6. Устанавливают значение весовых коэффициентов и переходят к этапу 4

Замечание: Произвольный выбор значений αi приводит к значительным колебаниям удаленности определяемых точек от области допустимых решений. Этот недостаток устраняется при решении задачи методом Эрроу – Гурвица, согласно которому на очередном шаге числа αi выбирают по формуле:

αi (0) – произвольное положительное число.

 

 







Дата добавления: 2015-04-19; просмотров: 638. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия