Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Отрицание суждений





Подобно тому как можно проделывать операции с понятиями, так и возможно производить определенные действия с суждениями. Операции с суждениями, как с единством составных частей, позволяют произвести интеллектуальные действия с данной формой мысли. К таким логическим операциям относятся отрицание, обращение, превращение и противопоставление. Наиболее подробно остановимся на отрицании суждений. Отрицание суждений связано с отрицательной частицей «не». Производится оно путем отрицания связки суждения, т.е. замены утвердительной связки на отрицательную. Отрицать можно не только утвердительное, но и отрицательное суждение. Этим действием истинное исходное суждение преобразуется в ложное, а ложное – в истинное. Отрицается суждение по средством отрицания квантора, субъекта, предиката или нескольких элементов сразу. Например, отрицая суждение «Кеша –(есть) мой любимый волнистый попугай», получаем следующие суждения «Кеша не есть мой любимый волнистый попугай», «Не Кеша есть мой любимый волнистый попугай»,

«Кеша есть не мой любимый волнистый попугай», «Не Кеша не есть мой любимый волнистый попугай» и т.д. В процессе отрицания суждений возникает ряд сложностей. Так суждение «Не все студенты – спортсмены» («Не все S есть Р») тождественно частноутвердительному «Некоторые студенты спортсмены» (Некоторые S есть Р). Значит подчиненное суждение иногда может выступать отрицанием общего. Например, суждение «Все студенты – спортсмены» можно отрицать суждением

«Только некоторые студенты – спортсмены» или «Неверно, что все студенты – спортсмены».

Более понятной в логике является операция отрицания суждения – превращение. Она представляет собой действие, связанное с изменением качества исходного суждения – связки. При этом предикат полученного суждения должен противоречить исходному. Таким образом утвердительное суждение превращается в отрицательное и наоборот. В виде формул это выглядит так:

S есть Р S не есть Р

S не есть не-Р S есть не Р

Общеутвердительное суждение «Все студенты есть учащиеся» превращается в общеотрацательное «Все студенты не есть не учащиеся», а общеотрицательное

«Все растения не есть фауна» – в общеутвердительное «Все растения есть не- фауна». Частноутвердительное суждение «Часть студентов есть спортсмены» превращается в частноотрицательное «Часть студентов не есть не- спортсмены». Частноотрицательное суждение «Некоторые цветы есть домашние» превращается в частноутвердительное «Некоторые цветы не есть не-домашние»

При отрицании какого либо суждения необходимо так же помнить о принципах логики. Обычно формулируются четыре основных: принцип тождества, противоречия и достаточности. Не вдаваясь в подробности, можно остановиться не наиболее существенных для операции отрицания суждений.

Принцип противоречия требует, чтобы мышление было последовательным.

Он требует, чтобы, утверждая нечто о чем-то, мы не отрицали того же о том же в том же самом смысле в то же самое время, т.е. запрещает одновременно принимать некоторое утверждение и его отрицание. Вытекающий из принципа противоречия, принцип исключенного третьего требует не отвергать одновременно высказывание и его отрицание. Суждения

«S есть Р» и «S не есть Р» нельзя отвергнуть одновременно, так как одно из них обязательно истинно, поскольку произвольная ситуация либо имеет, либо не имеет места в действительности.

Согласно этому принципу нужно уточнять наши понятия так, чтобы можно было давать ответы на альтернативные вопросы. Например: «Является ли это деяние преступлением или оно не является преступлением?». Если бы понятие «преступление» не было точно определено, то в некоторых случаях на этот вопрос невозможно было бы ответить. Другой вопрос: «Солнце взошло или не взошло?». Представим себе такую ситуацию: Солнце наполовину вышло из-за горизонта. Как ответить на этот вопрос? Принцип исключенного третьего требует, чтобы понятия уточнялись для возможности давать ответы на такого рода вопросы. В случае с восходом Солнца мы можем, например, договориться считать, что Солнце взошло, если оно чуть-чуть показалось из-за горизонта.

В противном случае считать, что оно не взошло.

Уточнив понятия, мы можем сказать о двух суждениях, одно из которых является отрицанием другого, что одно из них обязательно истинно, т.е. третьего не дано.








Дата добавления: 2015-04-19; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия