Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упорядоченные пары





Если задана пара , то множество называется упорядоченной парой и обозначается . При этом элемент называется первым элементом, а элемент — вторым элементом пары/

В формальной математике первый элемент упорядоченной пары называется также первой координатой или первой проекцией и обозначается . Аналогично второй элемент пары называется второй координатой или второй проекцией и обозначается .

Кортеж или -ка (упорядоченная -ка) — упорядоченный конечный набор длины (где ), каждый из элементов которого принадлежит некоторому множеству , . Элементы кортежа могут повторяться в нём любое число раз (этим, в частности, он отличается от упорядоченного множества, куда каждый элемент может входить только в одном экземпляре).

В математике кортеж обычно записывается перечислением элементов в круглых или угловых скобках.

В теории множеств кортеж обычно определяется индуктивно:

пустое множество — это кортеж (с нулевым количеством элементов);

для каждого кортежа , множество также является кортежем.

Элементы кортежа называются его компонентами, или координатами.

Кортеж длины нуль называется пустым.

Частными случаями кортежа является (по числу элементов) упорядоченная пара, тройка, четвёрка.

Многие математические объекты формально определяются как кортежи. Например точка в n-мерном пространстве действительных чисел определяется как кортеж длины n, составленный из элементов множества действительных чисел.

Прямое или декартово произведение — множество, элементами которого являются всевозможные упорядоченные пары элементов исходных непустых двух множеств.

Пусть даны два множества и . Прямое произведение множества и множества есть такое множество , элементами которого являются упорядоченные пары для всевозможных и .

Отображения произведения множеств в его множители ( и ) называют координатными функциями.

Аналогично строятся произведения нескольких множеств.







Дата добавления: 2015-04-19; просмотров: 1850. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия