Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упорядоченные пары





Если задана пара , то множество называется упорядоченной парой и обозначается . При этом элемент называется первым элементом, а элемент — вторым элементом пары/

В формальной математике первый элемент упорядоченной пары называется также первой координатой или первой проекцией и обозначается . Аналогично второй элемент пары называется второй координатой или второй проекцией и обозначается .

Кортеж или -ка (упорядоченная -ка) — упорядоченный конечный набор длины (где ), каждый из элементов которого принадлежит некоторому множеству , . Элементы кортежа могут повторяться в нём любое число раз (этим, в частности, он отличается от упорядоченного множества, куда каждый элемент может входить только в одном экземпляре).

В математике кортеж обычно записывается перечислением элементов в круглых или угловых скобках.

В теории множеств кортеж обычно определяется индуктивно:

пустое множество — это кортеж (с нулевым количеством элементов);

для каждого кортежа , множество также является кортежем.

Элементы кортежа называются его компонентами, или координатами.

Кортеж длины нуль называется пустым.

Частными случаями кортежа является (по числу элементов) упорядоченная пара, тройка, четвёрка.

Многие математические объекты формально определяются как кортежи. Например точка в n-мерном пространстве действительных чисел определяется как кортеж длины n, составленный из элементов множества действительных чисел.

Прямое или декартово произведение — множество, элементами которого являются всевозможные упорядоченные пары элементов исходных непустых двух множеств.

Пусть даны два множества и . Прямое произведение множества и множества есть такое множество , элементами которого являются упорядоченные пары для всевозможных и .

Отображения произведения множеств в его множители ( и ) называют координатными функциями.

Аналогично строятся произведения нескольких множеств.







Дата добавления: 2015-04-19; просмотров: 1850. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия