Системы оптимального управления. – Ягудина
Оптимальное управление — это задача проектирования системы, обеспечивающей для заданного объекта управления или процесса закон управления или управляющую последовательность воздействий, обеспечивающих максимум или минимум заданной совокупности критериев качества системы. Наиболее широко при проектировании систем управления применяются следующие методы: вариационное исчисление, принцип максимума Понтрягина и динамическое программирование Беллмана. Для решения задачи оптимального управления строится математическая модель управляемого объекта или процесса, описывающая его поведение с течением времени под влиянием управляющих воздействий и собственного текущего состояния. Математическая модель для задачи оптимального управления включает в себя: формулировку цели управления, выраженную через критерий качества управления; определение дифференциальных или разностных уравнений, описывающих возможные способы движения объекта управления; определение ограничений на используемые ресурсы в виде уравнений или неравенств. Оптимальная система, система автоматического управления, обеспечивающая наилучшее (оптимальное) с некоторой точки зрения функционирование управляемого объекта. Его характеристики и внешние возмущающие воздействия могут изменяться непредвиденным образом, но, как правило, при определённых ограничениях. Наилучшее функционирование системы управления характеризуется т. н. критерием оптимального управления (критерием оптимальности, целевой функцией), который представляет собой величину, определяющую эффективность достижения цели управления и зависящую от изменения во времени или в пространстве координат и параметров системы. Критерием оптимальности могут быть различные технические и экономические показатели функционирования объекта: кпд, быстродействие, среднее или максимальное отклонение параметров системы от заданных значений, себестоимость продукции, отдельные показатели качества продукции либо обобщённый показатель качества и т.п. Критерий оптимальности может относиться как к переходному, так и к установившемуся процессу, либо и к тому и к др. Различают регулярный и статистический критерии оптимальности. Первый зависит от регулярных параметров и от координат управляемой и управляющей систем. Второй применяется тогда, когда входные сигналы — случайные функции или (и) нужно учесть случайные возмущения, порождённые отдельными элементами системы. По математическому описанию критерий оптимальности может быть либо функцией конечного числа параметров и координат управляемого процесса, которая принимает экстремальное значение при оптимальном функционировании системы, либо функционалом от функции, описывающей закон управления; при этом определяется такой вид этой функции, при котором функционал принимает экстремальное значение. Для расчёта О. с. пользуются принципом максимума Понтрягина либо теорией динамического программирования. Оптимальное функционирование сложных объектов достигается при использовании самоприспосабливающихся (адаптивных) систем управления, которые обладают способностью автоматически изменять в процессе функционирования алгоритм управления, свои характеристики или структуру для сохранения неизменным критерия оптимальности при произвольно изменяющихся параметрах системы и условиях её работы. Поэтому в общем случае О. с. состоит из двух частей: постоянной (неизменной), включающей объект управления и некоторые элементы управляющей системы, и переменной (изменяемой), объединяющей остальные элементы.
|