Классический метод расчета переходных процессов. Формирование расчетного уравнения, степень расчетного уравнения. Граничные условия
Для анализа переходного процесса предварительно следует привести схему к минимальному числу накопителей энергии, исключив параллельные и последовательные соединения однотипных реактивных элементов (индуктивностей или емкостей). Система интегродифференциальных уравнений, составленных в соответствии с законами Кирхгофа или методом контурных токов, может быть сведена путем подстановки к одному дифференциальному уравнению, которое используется для составления характеристического уравнения. Порядок дифференциального, следовательно, и характеристического уравнения зависит от числа реактивных элементов приведенной схемы. Главная трудность в решения задачи классическим методом для уравнений высоких порядков состоит в отыскании корней характеристического уравнения и постоянных интегрирования. Поэтому для решения уравнений порядка выше второго применяют другие методы, в частности операторный метод, основанный на применении преобразования Лапласа и исключающий трудоемкую процедуру отыскания постоянных интегрирования. Для практических целей при анализе переходных процессов в любой схеме классическим методом может быть рекомендован следующий алгоритм. 1. Рассчитать принужденный (установившийся) режим при t→∞. Определить принужденные токи и напряжения. 2. Рассчитать режим до коммутации. Определить токи в ветвях с индуктивностью и напряжения на конденсаторах. Значения этих величин в момент коммутации является независимыми начальными условиями. 3. Составить дифференциальные уравнения для свободного процесса (Е = 0) в схеме после коммутации по законам Кирхгофа или по методу контурных токов. Алгебраизировать данные уравнения, получить характеристическое уравнение и найти его корни. Существуют приемы, упрощающие операцию отыскания корней характеристического уравнения, например, приравнивание нулю входного операторного сопротивления цепи, которое получается путем замены в выражении комплексного сопротивления цепи множителя "jω" на оператор "р". 4. Записать общие выражения для искомых напряжений и токов в соответствии с видом корней характеристического уравнения. 5. Переписать величины, полученные в п. 4, и производные от них при t = 0. 6. Определить необходимые зависимые начальные условия, используя независимые начальные условия. 7. Подставив начальные условия в уравнения п. 5, найти постоянные интегрирования. 8. Записать законы изменения искомых токов и напряжений. Классический метод расчёта переходных процессов Классический метод расчета переходных процессов основан на составлении и последующем решении (интегрировании) дифференциальных уравнений, составленных по законам Кирхгофа и связывающих искомые токи и напряжения послекоммутационной цепи и заданные воздействующие функции (источники электрической энергии. Преобразуя систему уравнений, можно вывести итоговое дифференциальное уравнение относительно какой-либо одной переменной величины x (t): Здесь n – порядок дифференциального уравнения, он же – порядок цепи, коэффициенты ak > 0 и определяются параметрами пассивных элементов R, L, C цепи, а правая часть является функцией задающих воздействий. В соответствии с классической теорией дифференциальных уравнений полное решение неоднородного дифференциального уравнения находится в виде суммы частного решения неоднородного дифференциального уравнения и общего решения однородного дифференциального уравнения: Частное решение полностью определяется видом правой части f (t) дифференциального уравнения. В электротехнических задачах правая часть зависит от воздействующих источников электрической энергии, поэтому вид Общее решение Таким образом, любая искомая величина в переходном режиме
Свободную составляющую
где n – порядок цепи, совпадающий с порядком дифференциального уравнения; pk – корни характеристического уравнения (собственные числа цепи); Ak – постоянные интегрирования. Собственные числа линейных цепей либо действительные отрицательные, либо комплексные с отрицательными вещественными частями (т.е. находятся в левой полуплоскости комплексных чисел). Поэтому В искомом решении
|