Включение пассивного двухполюсника под действие кусочно-непрерывного напряжения. Формула Дюамеля
Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения. При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t. Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени. В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна . В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока . Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е. . Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем Соотношение называется интегралом Дюамеля. Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению. Последовательность расчета с использованием 1. Определение функции (или ) для исследуемой цепи. 2. Запись выражения (или ) путем формальной замены t на . 3. Определение производной . 4. Подстановка найденных функций в (1) и интегрирование определенного интеграла. В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения. Исходные данные для расчета: , , . 1. Переходная проводимость 2. 3. 4. Полученный результат аналогичен выражению тока, определенному в предыдущей лекции на основе формулы включения.
|