Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Энергетический баланс биосферы. Круговорот веществ в биосфере. Большой и малый круговорот





Энергетический баланс биосферы - соотношение между поглощаемой и излучаемой энергией. Определяется приходом энергии Солнца и космических лучей, которая усваивается растениями в ходе фотосинтеза, часть преобразуется в другие виды энергии и еще часть рассеивается в космическом пространстве.

 

Круговорот в биосфере - повторяющиеся процессы превращений и пространственных перемещений веществ, имеющие определенное поступательное движение, выражающееся в качественных и количественных различиях отдельных циклов.

 

Выделяют два вида круговорота:

большой (геологический) (круговорот веществ протекает от нескольких тысяч до нескольких миллионов лет, включая в себя такие процессы, как круговорот воды и денудация суши. Денудация суши складывается из общего изъятия вещества суши (52990 млн.т/год), общего привноса вещества на сушу (4043 млн.т/год) и составляет 48947 млн.т/год. Антропогенное вмешательство ведет к ускорению денудации, приводя, например, к землетрясениям в зонах водохранилищ, построенных в сейсмоактивных районах)

малый (биотический) (круговорот вещества происходит на уровне биогеоценоза или биогеохимического цикла)

 

3. Круговорот важнейших химических элементов в биосфере: углерода, азота, фосфора, кислорода.

Углерод в биосфере часто представлен наиболее подвижной формой – C02. Источником является вулканическая деятельность, связанная с вековой дегазацией мантии и нижних слоев земной коры.

 

Миграция C02 в биосфере Земли протекает двумя путями:

1-й путь закладывается в поглощение его в процессе фотосинтеза с образованием органических веществ и последующем захоронении их в литосфере в виде торфа, угля, горных сланцы, рассеянной органики, осадочных горных пород. Так, в далёкие геологические эпохи сотни млн. лет назад значительная часть фотосинтетического органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась и постепенно погребалась под различными минеральными осадками. Находясь в породах млн. лет, этот детрит под действием высоких t и P (процесс метаморфизации) превращался в нефть, природный газ и уголь (в зависимости от исходного материала, продолжительности и условий пребывания в породах). Теперь в ограниченных количествах добывают это ископаемое топливо для обеспечения потребностей в энергии, а сжигая его, в определённом смысле завершают круговорот углерода.

По 2-му пути миграция С осуществляется созданием карбонатной системы в различных водоемах, где CO2 переходит в H2CO3, HCO31-, CO32-. Затем с помощью растворенного в воде кальция происходит осаждение карбонатов CaCO3 биогенным и абиогенным путями. Возникают мощные толщи известняков. Наряду с этим большим круговоротом углерода существует еще ряд малых его круговоротов на поверхности суши и в океане. В пределах суши, где существуют растения, CO2 атмосферы поглощается в процессе фотосинтеза в дневное время. В ночное время часть его выделяется растениями во внешнюю среду. С гибелью растений и животных на поверхности происходит окисление органических веществ с образованием CO2. Особое место в современном круговороте веществ занимает массовое сжигание органических веществ и постепенное возрастание содержания CO2 в атмосфере, связанное с ростом промышленного производства и транспорта.

 

 

 

Азот.

При гниении органических веществ значительная часть содержащегося в них азота превращается в NH4, который под влиянием живущих в почве трифицирующих бактерий окисляется в азотную кисл­оту. Она вступая в реакцию с находящимся в почве карбонатами (например с СаСО3), образует нитраты:

2HN03 + СаСО3 à Са(NО3)2 + СО2 + Н20

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигание дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать O2 от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) пере­ходит в недоступную (свободный азот). Т.о., далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву; часть его постепенно выделяется в свободном виде. Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы возмещения потери азота. К таким процессам относятся прежде всего про­исходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращаясь в почве в ни­траты. Другим источником попадания азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бак­терий поселяются на корнях растений из семейства бобовых, вы­зывая образования характерных вздутий — «клубеньков». Усваи­вая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важных элементов питания растений.

 

 

 

Фосфор входит в состав генов и молекул, переносящих энергию внутрь клеток. В различных минералах P содержится в виде неорганического фосфатиона (PO43-). Фосфаты растворимы в воде, но не летучи. Растения поглощают PO43- из водного раствора и включают фосфор в состав различных органических соединений, где он выступает в форме т.н. органического фосфата. По пищевым цепям P переходит от растений ко всем прочим организмам экосистемы. При каждом переходе велика вероятность окисления содержащегося P соединения в процессе клеточного дыхания для получения органической энергии. Когда это происходит, фосфат в составе мочи или ее аналога вновь поступает в окружающую среду, после чего снова может поглощаться растениями и начинать новый цикл. В отличие, например, от CO2, который, где бы он ни выделялся в атмосферу, свободно переносится в ней воздушными потоками, пока снова не усвоится растениями, у фосфора нет газовой фазы и, следовательно, нет «свободного возврата» в атмосферу. Попадая в водоемы, фосфор насыщает, а иногда и перенасыщает экосистемы. Обратного пути, по сути дела, нет. Что-то может вернуться на сушу с помощью рыбоядных птиц, но это очень небольшая часть общего количества, оказывающаяся к тому же вблизи побережья. Океанические отложения фосфата со временем поднимаются над поверхностью воды в результате геологических процессов, но это происходит в течение миллионов лет.

Кислород. Кислород - наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели.

В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О2. Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров.

Свободный кислород современной земной атмосферы является побочным продуктом процесса фотосинтеза зеленых растений и его общее количество отражает баланс между продуцированием кислорода и процессами окисления и гниения различных веществ. В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

 







Дата добавления: 2015-04-19; просмотров: 740. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия