Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Газодинамические функции





Для модели замороженного течения (течения совершенного газа) можно установить аналитические зависимости между линейными параметрами и параметрами торможения.

Эти зависимости можно представить в виде функций от и , в газовой динамике они получили название газодинамических функций.

Установим вначале зависимость между местными термодинамическими параметрами, параметрами торможения и коэффициентом скорости

Связь между местной температурой и температурой торможения ( 0)

,

. (5.27)

Обычно вводят обозначение (5.28)

Так как , то на основании зависимостей и , будем иметь

, . (3.29)

Используя выражение (5.27) получим выражения для других газодинамических функций

(5.30)

. (5.31)

Функции изменяются в пределах от 1 до 0 (см. рис. 5.4).

Для изоэнтропного потока параметры торможения не изменяются, поэтому по характеру изменения функций можно судить о зависимости термодинамических параметров от скорости.

С ростом скорости потока р, и Т уменьшаются от максимального значения в точке торможения до нуля при .

Найдем критические параметры, положив скорость равной критической, т.е. :

, (5.32)

, (5.33)

. (5.34)

Иногда удобно бывает записывать полученные газодинамические функции в зависимости от числа Маха, для этого необходимо воспользоваться равенством (5.26):

, (5.35)

, (5.36)

. (5.37)

 

 

Начальник кафедры №16

полковник В. Волков

 

 


[1] См. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. – М.: Государственное издательство технико-теоретической литературы. 1957. С. 545.

Скалярный поток поля V через замкнутую поверхность Σ; равен интегралу от дивергенции V, распространенному на объем Ω;, заключенный внутри Σ;: или в декартовых координатах: .

 







Дата добавления: 2015-06-12; просмотров: 659. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия