Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения гидромеханики в дифференциальной форме





Рассмотрим первое уравнение системы (4.2)

Скалярное произведение векторов и равно

,

тогда

.

В соответствие с теоремой Остроградского-Гаусса[1] можно записать:

.

Это равенство справедливо для произвольного объема. Поскольку Ω; – произвольный объем, то подынтегральная функция равна 0:

или (4.5а)

. (4.5б)

Уравнение (4.5б) (или (4.5а)) называется уравнением неразрывности.

Теперь рассмотрим второе уравнение системы (4.2).

Обозначим левую его часть через I 1, правую – I 2:

,

.

Подставляя в уравнение и перенося правую часть влево, получим

.

Так как Ω; – произвольный объем, то с учетом теоремы Остроградского-Гаусса

.

Преобразуем полученное выражение, продифференцировав выражения в скобках, получим

.

В соответствие с уравнением неразрывности первое слагаемое равно нулю. Выражение в скобках второго слагаемого представим как скалярное произведение векторов, третье слагаемое перенесем в правую часть уравнения и разделим обе части уравнения на ρ;, в результате получим

. (4.6)

где .

Полученное в векторной форме выражение (4.6) в гидродинамике называют уравнением движения Эйлера.

Рассмотрим третье уравнение системы в виде (4.3).

Проведем аналогичные преобразования. В соответствие с теоремой Остроградского-Гаусса

.

Так как Ω; – произвольный объем, то

,

. ПРОВЕРЬ

Тогда у равнение энергии для частицы среды можно записать в следующем виде:

. (4.7)

Из (4.7) следует, что для частицы:

.

Для установившегося движения линии тока и траектории частиц одно и тоже, т.е. вдоль траектории частиц.

При установившемся движении частица движется вдоль линии тока. Поэтому, все соотношения, справедливые вдоль траектории, будут выполняться и вдоль линии тока.


Вопрос 5. Газодинамические параметры и функции.







Дата добавления: 2015-06-12; просмотров: 487. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия