Функция Грина неограниченного трехмерного пространства
Функция Грина неограниченного трехмерного пространства представлена выражением (2.16) в виде интегрального разложения. Соответствующие интегральные разложения векторных потенциалов и векторов электрического и магнитного полей используются при решении задач электродинамики. Но часто применяется свернутое представление функции Грина. Получим это представление. Функция Грина зависит от положения точек истоков и точек наблюдения . Обозначим расстояние между этими точками через и перейдем в выражении (2.16) от декартовой системы координат к сферической: , , - в физическом пространстве (рис. 2.3,а) и - в пространстве коэффициентов распространения (рис. 2.3,б). Имеем , , ; , , . Знаменатель выражения (2.16) и произведение дифференциалов при этом имеют вид ; . Показатель экспоненты .
Переменные интегрирования изменяются по от 0 до ∞, по от 0 до π, и по от 0 до 2π. Таким образом, выражение (2.16) принимает вид (2.22а) Для упрощения вычислений будем считать, что точка расположена на оси . Тогда точка и . Поэтому интегралы по и в (2.22а) просто вычисляются и получаем (2.22б) Для того что бы применить к вычислению последнего выражения теорему о вычетах, нужно перейти в интегралу по в бесконечных пределах. Для этой цели во втором слагаемом подынтегрального выражения перед поменяем знак (вместо + подставим - ’). Тогда . Суммируя интегралы, получаем . (2.22в) Перейдем на плоскость комплексного переменного (рис. 2.4). Подынтегральное выражение в (2.22в) имеет две особые точки типа полюса при и . Так как коэффициент распространения является комплексной величиной: , (2.23) где и - положительные величины (см. § 1.10), то особые точки определяются выражениями и , т.е. первый полюс лежит в четвертом квадранте комплексного переменного , а второй полюс - во втором (рис. 2.4). Если взять интеграл (2.22в) по кругу бесконечно большого радиуса в верхней полуплоскости комплексного переменного , то он обратится в нуль. Поэтому дополняя (2.22в) этим интегралом, получаем , где – замкнутый контур в верхней полуплоскости комплексного переменного (обход по контуру против часовой стрелки). Применяя теорему о вычетах, получаем , или наконец, (2.24) Свернутая форма функции Грина (2.24) неограниченного пространства часто используется при вычислении полей, возбуждаемых в свободном пространстве различными излучателями.
|