Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Представление функции Грина в декартовой и цилиндрической системах координат





 

Часто электродинамические задачи необходимо решать в декартовой или цилиндрической системе координат. При этом используются представления функции Грина в интегральной форме. Последние можно получить с помощью выражения (2.16).

2.4.1. Рассмотрим прежде всего это выражение в декартовой системе координат. Формулу (2.16) можно упростить, выполнив интегрирование, скажем, по . Подынтегральное выражение (2.16) на плоскости комплексного переменного при фиксированных значениях и имеет две особые точки типа полюса при и при , где . Предположим, что , где k – действительная величина. Тогда на плоскости комплексного переменного первый полюс находится в верхней полуплоскости, а второй в нижней. Если , то

(2.25)

можно дополнить интегралом по полукругу бесконечно большого радиуса в верхней полуплоскости (рис. 2.4), где при подынтегральное выражение стремится к нулю. Тогда последний интеграл равен интегралу по замкнутому контуру , охватывающему особую точку. Применяя теорему о вычетах, находим, что интеграл равен произведению на вычет в верхней полуплоскости в точке . Выполняя вычисление, находим, что выражение (2.25) равно .

Если , то исходный интеграл (2.25) можно дополнить интегралом по полукругу бесконечно большого радиуса в нижней полуплоскости, где при подынтегральное выражение стремится к нулю. Тогда интеграл (2.25) равен интегралу по замкнутому контуру. Применяя теорему о вычетах, находим, что интеграл (2.25) равен .

Таким образом, учитывая значение интеграла по в формуле (2.16), получаем

, (2.26)

где знак «плюс» в показателе экспоненты берется при , а знак «минус» - при .

Если , то, выполним вычисление интеграла (2.25), получим тем же путем из формулы (2.16) выражение (2.26). Формула (2.26) остается верной и для среды с потерями, т.е. когда - комплексная величина.

Отметим, что в выражение (2.16) можно было выполнить интегрирование по или ; при этом получаются ещё два выражения, аналогичные (2.26). Формула (2.26) применяется весьма эффективно во многих внешних задачах электродинамики.

 







Дата добавления: 2015-06-12; просмотров: 383. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия