Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение проблемы разнонаправленности частных критериев





Рассматривая линейную форму с частными критериями, в том числе и с нормированными, несложно заметить, что частные критерии с разным смыслом должны учитываться по-разному. Действительно, для одних частных критериев желательно как можно большее значение (о таких критериях говорят, что они имеют повышающее влияние на качество варианта), для других желательно как можно меньшее значение (о таких критериях говорят, что они имеют понижающее влияние на качество варианта).

Учесть этот факт можно так: в линейной форме интегрального критерия значения частных критериев, повышающих качество варианта, берутся со знаком плюс, а значения частных критериев, понижающих качество, берутся со знаком минус. При этом формула вычисления частного критерия принимает вид:

, ,

где – показатель направления влияния частного критерия на качество варианта, вычисляемый по формуле:

Указанный критерий можно записать в следующем виде:

, ,

где , () – суммы взвешенных нормализованных значений критериев, повышающих и понижающих качество варианта частных критериев соответственно, т.е.

, ,

, ,

где – множество номеров частных критериев, повышающих качество варианта; – множество номеров частных критериев, понижающих качество варианта.

Альтернативным решением проблемы различия направлений влияния частных критериев на качество варианта является использование дробно-рациональной формы интегрального критерия:

, .

Заметим, что сравнение вариантов по двум указанным выше критериям может дать различные результаты: лучший вариант по первому (линейному) критерию может оказаться на втором или даже третьем месте по второму (дробно-рациональному) критерию. Наглядный пример приведён в следующей таблице, в которой использованы следующие обозначения: A, B, C, D – условные идентификаторы вариантов.

Вариант /
A        
B       1,222222
C       1,040404
D       1,005005

Как видно из таблицы, варианты ранжируются линейным критерием в обратном порядке их перечислению, т.е. варианты занимают следующие места: 1) D; 2) C; 3) B; 4) A. В тоже время по дробно-рациональному критерию варианты ранжируются в порядке их перечисления: 1) A; 2) B; 3) C; 4) D.

Естественно, возникает вопрос: какой же критерий более «объективен»? Ответ легко получить, интерпретируя сумму как сумму вкладов, имеющихся на ваших счетах, а – как сумму ваших долгов. При этом значение линейного критерия – это либо превышение запасов над долгом (если ), либо взятая со знаком минус величина фактического долга (если ). Таким образом – это вполне содержательно интерпретируемая величина.

Значение же дробно-рационального критерия – это количество ваших запасенных рублей, приходящихся на один рубль долга. Очевидно, что это, хотя и интересный, но недостаточно информативный показатель. Единственно, что можно выяснить по этому показателю – имеет ли место задолженность или запасы превышают общий долг, но сама величина долга-превышения остаётся неизвестной. Эту же информацию можно получить и из критерия , поскольку справедливы отношения:

() «();

() «().

Оба эквивалентных неравенства первого отношения означают, что сумма задолженностей не превышает суммы запасов. Аналогично, эквивалентные неравенства второго отношения означают наличие реального долга. Однако отношение не указывает абсолютную величину реального долга или превышения запасов над долгами.

Изложенное позволяет сделать вывод о преимуществе линейного критерия перед дробно рациональным. Дробно-рациональный критерий можно использовать как дополнительный в том случае, если окажется несколько вариантов с одинаковыми значениями линейного критерия.







Дата добавления: 2015-06-12; просмотров: 515. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия