Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СМО с конечной очередью. Определение вероятностей состояний





СМО с конечной очередью длины т характеризуется тем, что при поступлении очередной заявки возможны три исхода:

– заявка немедленно принимается на обслуживание, если в си­стеме в данный момент находится k заявок и k<n;

– заявка становится в очередь, если п£ k<n+m;

– заявка получает отказ и покидает систему, если k=n+m.Следовательно, в любой момент времени система может нахо­диться в одном из п+т+1 состояний, то есть множество состояний

Увеличение числа заявок в системе происходит только под воз­действием потока заявок интенсивности l, а уменьшение числа зая­вок в системе — только в результате завершения обслуживания одной из заявок, то есть

(k занятых приборов порождают поток обслуженных заявок ин­тенсивности k m).

 
 


Размеченный граф состояний СМО с конечной очередью для п=3, т=2 изображен на рис. 2.5.

Для определения вероятностей состояний системы в формулы (2.16) и (2.17) подставим значения

и получим:

– для k£n
;

– для k<n
.

Полагая в уравнении (2.17) N=n+m, находим

(2.25)

Учитывая, что a0/0!=1 и вычисляя сумму т членов геометри­ческой прогрессии со знаменателем r, находим

(2.26)

Из уравнения (2.16) находим вероятности состояний

; (2.27)

(2.28)

На основании формул (2.25) – (2.28) определим основные по­казатели эффективности системы.

1. Вероятность отказа в обслуживании – это вероятность того, что в СМО имеется п+т заявок, то есть

(2.29)

Зная Ротк по формулам (2.19) – (2.21), можно вычислить аб­солютную и относительную пропускную способность системы, сред­нее число занятых приборов, коэффициенты их загрузки и простоя.

2. Вероятность того, что поступившая в систему заявка заста­нет все каналы занятыми (не будет немедленно принята на об­служивание),

. (2.30)

3. Средняя длина очереди

,

где Pn+r – вероятность того, что в очереди находится ровно r зая­вок (k=n+r).

Подставляя в полученное выражение Pn+r, находим

; (2.31)

. (2.32)

4. Среднее время ожидания в очереди определяется как мате­матическое ожидание. Если к моменту поступления заявки в оче­реди находится r=0, 1,..., т–1 заявок, то она поступит на об­служивание после завершения обслуживания r+1 заявок, то есть

;

. (2.33)

Среднее время ожидания – это среднее время на­копления очереди длиной L.

Среднее число заявок, находящихся в СМО, и среднее время пребывания заявки в системе определяются по формулам (2.22) и (2.23) с учетом формул (2.31) – (2.33).

Из полученных соотношений следует, что показатели Ротк, q, Nз, L, Y не зависят от конкретных значений l и m, а только от их соотношения a. Показатели напротив, чувствительны к изменению не только параметра a, но и к изменению l при a=const. Так, например, при увеличении l и m в два раза Ротк, q, nз и L не изменяются, Q увеличивается, а уменьшается в два раза, то есть при одновременном увеличении плотности потоков зая­вок и обслуживании характеристики процесса обслуживания улуч­шаются.







Дата добавления: 2015-06-12; просмотров: 392. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия