Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сложное движение твердого тела





Так же как при сложном движении точки нередко и движение тела можно рассматривать как сумму нескольких движений. Например, со­стоящее из двух поступательных движений или поступательного движения и вращения в округ оси. Часто встречаются движения, состоящие из двух вращений вокруг осей или поступательного движения и вращения вокруг точки. Исследование движения точек принадлежащих телу, совершаю­щему сложное движение, можно проводить методами, изложенными выше и никаких особых трудностей не вызывает. Но анализ сложного движения тела, состоящего из нескольких вращений, обнаруживает неко­торые особенности, которые следует рассмотреть специально.

 

Сложение вращений тела вокруг двух осей

На рис. 7 изображено тело, которое со­вершает сложное движение – вращение вокруг оси, которая сама вращается вокруг другой, не­подвижной оси. Естественно, первое вращение следует на­звать относительным движением тела, второе – переносным, а соответствующие оси обозна­чить .

Рис.7

 

Абсолютным движением будет вращение вокруг точки пересечения осей О. (Еcли тело имеет больший размер, то его точка, совпа­дающая с О, все время будет неподвижной). Угловые скорости переносного вращения и от­носительного вращения изображается векто­рами и , отложенными из неподвижной точки О, точки пересечения осей, по соответст­вующим осям.

Найдем абсолютную скорость какой-нибудь точки М тела, положение которой определяется радиусом-вектором (рис.7).

Как известно, она складывается из двух скоростей, относительной и переносной: . Но относительное движение точки (ис­пользуя правило остановки), есть вращение с угловой скоро­стью вокруг оси , определяется радиусом-вектором . Поэтому, .

Рис.11.1.

Переносное движение точки в данный момент времени, опять используя правило остановки, тоже есть вращение, но вокруг оси с угловой скоростью и будет определяться тем же радиусом-вектором . Поэтому и переносная скорость r.

Абсолютная же скорость, скорость при вращении вокруг неподвижной точки О, при сферическом движении, определяется аналогично , где - абсолютная угловая скорость, направленная по мгновенной оси вращения Р.

По формуле сложения скоростей получим: или .

Отсюда

То есть мгновенная угловая скорость, угловая скорость абсолютного движения, есть векторная сумма угловых скоростей переносного и относительного движений. А мгновенная ось вращения P, направленная по вектору , совпадает с диагональю параллелограмма, построенного на векторах и (рис.7).

Частные случаи:

1. Оси вращения и параллельны, на­правления вращений одинаковы (рис. 8).

Рис.8

 

Так как векторы и параллельны и направлены в одну сторону, то абсолютная угловая скорость по величине равна сумме их модулей и вектор ее направлен в туже сторону. Мгновенная ось вращения Р делит рас­стояние между осями на части обратно пропорциональные и :

. (аналогично равнодействующей параллельных сил).

В этом частном слу­чае тело А совершает плоскопараллельное движение. Мгновенный центр скоростей находится на оси Р.

2. Оси вращения параллельны, направления вращений противоположны (рис.9).

Рис.9

 

В этом случае (при ). Мгновенная ось вращения и мгновенный центр скоростей находятся за вектором большей угловой скорости на расстояниях таких, что (опять по аналогии определения равнодействующей параллельных сил).

3. Оси вращения параллельны, направления вращений противоположны и угловые скорости равны.

Угловая скорость абсолютного движения и, следовательно, тело совершает поступательное движение. Этот случай называется парой вращений, по аналогии с парой сил.

Пример 4. Диск радиусом R вращается вокруг горизонтальной оси с угловой скоростью , а эта ось вместе с рамкой вращается вокруг вертикальной неподвижной оси с угловой скоростью (рис.10).

Рис.10

 

Горизонтальная ось – это ось относительного вращения ; вертикальная ось – ось переносного вращения . Соответственно угловые скорости векторы их направлены по осям и .

Абсолютная угловая скорость , а величина ее, так как ,

.

Скорость точки А, например, можно найти или как сумму переносной и относи­тельной скоростей: , где и ,

или как при абсо­лютном движении, при вращении вокруг мгновенной оси Р, .

Вектор скорости будет расположен в плоскости перпендикулярной вектору и оси Р.

 

Пример 5. Водило ОА с укрепленными на нем двумя колесами 2 и 3 вращается вокруг оси О с угловой скоростью . Колесо 2 при этом будет обкатываться по неподвижному колесу 1 и заставит вращаться колесо 3. Найдем угловую скорость , этого колеса. Радиусы колес R1, R2, R3 (рис.11).

Рис.11

 

Колесо 3 участвует в двух движениях. Вращаться вместе с водилом вокруг оси О и относительно оси O1. Ось О будет переносной осью, ось O1 – относительной. Переносная угловая скорость колеса 3 – это угловая скорость водила , направленная по часовой стрелке, как .

Чтобы определить угловую скорость относительного движения, наблюдателю нужно находиться на водиле. Он увидит водило неподвижным, колесо 1 вращающимся против часовой стрелки со скоростью (рис. 12), а колесо 3 – вращающимся с относительной угловой скоростью , против часовой стрелки. Так как , то . Оси вращения параллельны, направления вращений противоположны. Поэтому и направлена так же как , против часовой стрелки. В частности, если R3=R1, то и . Колесо 3 будет двигаться поступательно.

Рис.12

 

Исследование движения других подобных конст­рукций (планетарных и дифференциальных редукто­ров, передач) ведется аналогичным способом.

Переносной угловой скоростью является угловая скорость водила (рамки, крестовины и т.п.), а чтобы определить относительную скорость какого-либо ко­леса, нужно водило остановить, а неподвижное колесо за­ставить вращаться с угловой скоростью водила, но в противоположную сторону.

Угловые ускорения тела в абсолютном движении можно искать как производную , где . Покажем (рис.13) единичные векторы и (орты осей и ), а векторы угловых скоростей запишем так: .

Тогда и угловое ускорение, при ,

Рис.11.7.

Здесь

Поэтому или

и ,

где – угловое ускорение переносного вращения; – угловое ускорение относительного вращения; – добавочное угловое ускорение, которое определяет изменение относительной угловой скорости при переносном движении. Направлен этот вектор перпендикулярно осям и , как скорость конца вектора . Модуль добавочного углового ускорения , где - угол между осями.

Конечно, если оси вращения параллельны, это угловое ускорение будет равно нулю, так как .

Рис.13

 







Дата добавления: 2015-06-12; просмотров: 537. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия