Принципы разделения мощных пластов на слои. Разработка мощных пластов наклонными слоями с восходящей или нисходящей отработкой слоев длинными столбами по простиранию
К мощным относятся пласты толщиной свыше 3,5 м. Мощные пласты, выемка которых сразу на полную мощность затруднена, разделяют на отдельные слои, отрабатываемые самостоятельно (как отдельный пласт средней мощности) в определенной последовательности. Слой – ограниченная двумя параллельными плоскостями часть мощного угольного пласта. Слои бывают: - наклонные – располагаются параллельно плоскости напластования, т.е. кровле и почве; - горизонтальные – горизонтально к плоскости напластования; - поперечно-наклонные – под углом 30-45°к плоскости напластования. Толщина слоя составляет: · при индивидуальной крепи не более 2,5-3,5 м; · при механизированной крепи достигает 4,5-7 м. Чем больше толщина слоя, тем меньше их в пласте, а следовательно, меньше подготовительных выработок проводится для выемки пласта. С увеличением толщины слоя требуется более сложная и тяжелая крепь, труднее производить выемку угля и управлять горным давлением, что в конечном счете, снижает производительность труда и безопасность работ. Слои могут отрабатываться в нисходящем, восходящем и комбинированном порядке (при нисходящем порядке сначала вынимают самый верхний слой, а затем нижележащий, при восходящем – наоборот). Порядок отработки слоев определяется с учетом свойств угля и вмещающих пород, мощности и угла падения пласта, а также необходимостью недопущения сдвижений земной поверхности.
Наиболее распространены среди слоевых систем системы разработки наклонными слоями. Сущность: пласт разделяется на равные или неравные слои мощностью 2-5 м, разрабатываемые самостоятельно как пласты средней мощности. Слои могут отрабатываться либо последовательно один за другим, либо одновременно с некоторым опережением (обычно верхнего слоя) на 20-25 м на крутых пластах и на 60-80 м до 100 м на пологих. Порядок отработки слоев – любой чаще всего нисходящий с обрушением кровли. Особенности: тесная взаимосвязь очистных и подготовительных работ во всех слоях в положении, пространстве и во времени. Отработку наклонных слоев, как правило, ведут столбовыми системами разработки с подвиганием очистных забоев по простиранию (этажная, панельная подготовка), по восстанию (при погоризонтной). При этажной подготовке этажи могут отрабатываться по схеме «лава-этаж» или с разделением на подэтажи (в этом случае этаж делят на выемочные поля, чаще всего однокрылые).
§ Системы разработки наклонными слоями с обрушением пород кровли. Применяются при угле наклона до 35° и на глубинах до 900 м породы должны хорошо слеживаться. Варианты: 1. С выемкой слоев длинными столбами по простиранию по схеме «лава-этаж» (лава-ярус) (рис. 1, 2). Этажные (ярусные) откаточные штреки обычно располагают у почвы пласта, иногда проходят по середине пласта или в породах его лежачего бока, соединяя через каждые 40-60 м с нижними слоевыми (конвейерными) штреками, горизонтальными или наклонными квершлагами или гезенками. Бремсберги с ходками обычно проводят из почвы пласта, иногда ходки размещают у кровли пласта. Подготовку каждого слоя производят путем проведения откаточного и вентиляционного штреков. 2. С выемкой слоев длинными столбами с разделением этажа на подэтажи. Этажный, откаточный и вентиляционный штреки могут быть как пластовыми (чаще по нижнему слою), так и полевыми. Аналогично варианту 1. 3. С выемкой слоев длинными столбами по простиранию с разделением этажа на подэтажи и применением гибкого перекрытия. Сущность: мощный пласт делят на слои разной высоты. Верхний слой обычный, а нижний слой тоже обычной высотой вынимается с одновременной отбойкой межслоевой толщи угля в три приема. Когда комбайн углубляется в пласт на 1,1-1,2 м, тогда через специальные люки в верхней части секции крепи производят буровзрывную отбойку межслоевой толщи. Затем куски отбитого угля под защитой гибкого металлического перекрытия выпускают через люки в крепи прямо на забойный конвейер (рис. 4).
На почве каждого слоя (верхнего) кладут гибкое металлическое перекрытие (стальные полосы сечением 50×3,2 мм в виде решетки 20×25 см и сверху в 2-3 слоя сетка «рабица». 4. С последовательной выемкой слоев длинными столбами по падению (рис. 5). Обычно два слоя, примерно по 2,5 м. Применяется на пластах с углом наклона 10-12°.
§ Системы разработки наклонными слоями с закладкой (рис. 6, 7). Наиболее распространенный вариант выемки слоев в восходящем порядке с применением самотечной гидравлической или пневматической закладки. Область применения: крутые наклонные пласты с неустойчивыми и труднообрушаемыми кровлями, пласты, склонные к самовозгоранию, а также необходимость охраны объектов на поверхности.
4. Методы моделирования проявлений горного давления при отработке месторождений: назначение, сущность, разновидности (метод эквивалентных материалов, центробежное и оптическое моделирование, математическое моделирование). Моделирование как метод исследования широко используют в различных областях современного естествознания и техники: аэромеханике, гидравлике, теплотехнике, самолето- и ракетостроении, различных областях машиностроения, гидротехническом строительстве и т. д. Модели - это инженерные представления, которые могут быть материализованы в виде физических моделей или сформулированы математически. В натурных условиях обычно весьма ограничены возможности варьирования параметрами системы, технологией и последовательностью ведения горных работ, тогда как при моделировании можно проследить влияние основных параметров в самых широких пределах. Вместе с тем при построении любого вида моделей воспроизводятся только общие, принципиально существенные особенности изучаемых явлений и чётко отбираются действующие факторы, которыми в процессе модельных исследований можно варьировать. Применительно к такому объекту, как горные породы, например, невозможно воспроизвести микротрещиноватость и мелкоблоковую трещиноватость, даже при очень крупных масштабах моделирования. Таким образом, учитывая преимущества и недостатки обоих подходов, можно сказать, что оптимальное сочетание натурных исследований с моделированием позволяет всесторонне исследовать изучаемые процессы и явления, выявить как общие закономерности, так и влияние отдельных факторов и при этом существенно сэкономить материальных затраты и время. Физическое моделирование предусматривает воссоздание в физической модели тех же самых или аналогичных физических полей, что действуют и в объекте натуры, лишь измененных по своим абсолютным значениям в соответствии с масштабом моделирования. Одним из основных преимуществ физического моделирования является возможность осуществления прямых наблюдений за моделируемыми процессами и явлениями, иногда это преимущество является решающим. В физическом моделировании выделяется аналоговое моделирование, которое предусматривает замену в модели по сравнению с натурой одних физических полей другими, например замену натурного поля механических напряжений электрическим полем в модели или замену поля механических напряжений картиной оптической анизотропии в оптически чувствительных прозрачных материалах. Таким образом, на аналоговых моделях изучают закономерности явлений и процессов, протекающих в натурных объектах, используя математическую аналогию различных по физической природе процессов, т. е. математическую тождественность основных законов, совпадение дифференциальных уравнений, описывающих эти процессы. В отличие от физического моделирования математическое моделирование предусматривает построение некоторых идеализированных схем или, другими словами, математических моделей исследуемых процессов или явлений и их исследование аналитическими методами. Исходя из этого, методы математического моделирования относят к теоретическим методам исследования.
|