Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обработка результатов прямых равнорассеянных наблюдений





Прямыми называются измерения, в результате которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения осуществляются путем многократных наблюдений. Результаты наблюдений называются равнорассеянными, если они являются независимыми, одинаково распределенными случайными величинами. Равнорассеянные результаты получают при измерениях, проводимых одним наблюдателем или группой наблюдателей с помощью одних и тех же методов и средств измерений в неизменных условиях внешней среды.

Обработка результатов наблюдений в соответствии с методикой прямых измерений с многократными наблюдениями производится в следующем порядке:

1. Путем введения поправок исключают известные систематические погрешности из результатов наблюдений.

2. Вычисляют среднее арифметическое исправленных результатов наблюдений, принимая его за оценку истинного значения измеряемой величины.

3. Вычисляют оценку среднеквадратического отклонения результатов наблюдения и оценку среднеквадратического отклонения среднего арифметического.

4. Проверяют гипотезу о нормальности распределения результатов наблюдения. Если число результатов , используют критерий Пирсона , при – составной критерий. Уровень значимости выбирается из интервала 0.02 – 0.10. При нормальность распределения не проверяется.

5. Если результаты наблюдений распределены нормально, то определяют наличие грубых погрешностей и промахов и если последние обнаружены, соответствующие результаты отбраковывают и повторяют вычисления.

6. Вычисляют доверительные границы случайной погрешности при доверительной вероятности , а также при , если измерения в дальнейшем повторить нельзя.

7. Определяют границы неисключенной систематической погрешности результата измерений. В качестве составляющих неисключенной систематической погрешности рассматривают погрешности метода, погрешности средств измерений (например пределы допускаемой основной и дополнительных погрешностей, если их случайные составляющие пренебрежимо малы) и погрешности, вызванные другими источниками. При суммировании составляющих неисключенные систематические погрешности средств измерений рассматриваются как случайные величины. Если их распределение неизвестно, то принимается равномерное распределение и тогда границы неисключенной систематической погрешности результата при числе составляющих определяют как

, (64)


где – границы отдельных составляющих общим числом ; – коэффициент, равный 1.1 при доверительной вероятности и 1.4 при .

8. Вычисляют доверительные границы погрешности результата. Если выполняется условие , то систематической погрешностью можно пренебречь и определить доверительные границы погрешности результата как доверительные границы случайной погрешности при (и при ); если же выполняется условие , то можно пренебречь случайной погрешностью и тогда при ).

Если эти условия не выполняются, то доверительные границы погрешности результата определяют по формуле , где коэффициент находят из выражения

(65)


а среднеквадратическое общей погрешности результата находят квадратическим суммированием дисперсии случайной и систематической погрешности результата, определяемой формулой (63). Границы случайной и систематической погрешности, входящие в формулу (65), необходимо выбирать при одной и той же доверительной вероятности ( или ).

9. Результат измерения записывают в виде , а при отсутствии сведений о виде функции распределения составляющих погрешности и необходимости дальнейшей обработки результатов и анализа погрешностей – в виде .

Если полученный при измерениях результат в дальнейшем используется для анализа и сопоставления с другими результатами или является промежуточным для нахождения других величин, то необходимо указать раздельно границы систематической погрешности и среднеквадратическое отклонение случайной погрешности: .

В некоторых случаях нас может интересовать не сама измеряемая величина, а связанная с ней функциональной зависимостью. Требуется найти интервальную или точечную оценку ее истинного значения. Решается такая задача следующим образом.

Пусть и f – непрерывная дифференцируемая функция в окрестности точки .

При проведении точных измерений . Тогда

. (66)

Пример. Измеренный диаметр круга мм. Требуется найти площадь круга .

По формуле (66)

.







Дата добавления: 2015-08-30; просмотров: 373. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия