Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии





Ткани организма проводят не только постоянный (см. § 12.10), но и переменный ток. Опыт показывает, что в этом случае сила то­ка, проходящая через биологическую ткань, опережает по фазе приложенное напряжение. Следовательно (см. § 14.3), емкостное сопротивление тканей больше индуктивного. В таблице 24 в качестве примера приведены значения разности фаз тока и напря­жения для некоторых тканей (частота 1 кГц).

Таблица 24

Название ткани Фаз в градусах
Кожа человека, лягушки -55
Нерв лягушки -64
Мышцы кролика -65

 

Отсюда следует, что моделировать электрические свойства био­логических тканей можно, используя резисторы, которые облада­ют активным сопротивлением, и конденсаторы — носители емко­стного сопротивления. В качестве модели обычно используют эк­вивалентную электрическую схему тканей организма. Она представляет собой схему, состоящую из резисторов и конденса­торов, частотная зависимость (дисперсия) импеданса которой близка к частотной зависимости импеданса биологической ткани.

На рис. 14.10 представлен график частотной зависимости им­педанса мышечной ткани. Ради компактности кривая построена в логарифмических координатах. Из гра­фика видны две особенности этой зави­симости: во-первых, плавное уменьше­ние импеданса с увеличением часто­ты (общий ход зависимости импеданса от частоты) и, во-вторых, наличие трех областей частот, в которых имеет место отклонение от общего хода зави­симости импеданса от частоты: Z мало изменяется. Они были названы, соот­ветственно, областями α-, (β- и γ-дис­персии импеданса.

Установим, какая электрическая схема (модель) наиболее удачно отра­жает общий ход зависимости импе­данса ткани организма от частоты. В качестве вариантов рассмотрим схе­мы, представленные на рис. 14.11.

Для схемы, изображенной на рис. 14.11, а, частотная зависимость импеданса может быть получена из (14.41) при L = 0:

В соответствии с формулой (14.45) импеданс уменьшается с увеличением частоты, однако име-

ется противоречие с опытом: при ω→∞ Z →∞. Последнее означа­ет бесконечно большое сопротивление при постоянном токе, что противоречит опыту (рис. 14.10).

Схема, изображенная на рис. 14.11, б, соответствует общей тенденции экспериментальной кривой: при увеличении частоты уменьшается емкостное сопротивление и уменьшается импеданс. Однако при ω →∞,Хс →0 и Z → 0, что не соответствует опыту.

Наиболее удачна схема рис. 14.11, в, в ней отсутствуют проти­воречия с опытом, характерные для двух предыдущих схем. Имен­но такое сочетание резисторов и конденсатора может быть принято за эквивалентную электрическую схему тканей организма. Час­тотная зависимость импеданса эквивалентной электрической схе­мы соответствует общему ходу экспериментальной зависимости импеданса от частоты. Важно отметить, что при этом электроем­кость и, следовательно, диэлектрическая проницаемость оста­ются постоянными.

Поясним причину возникновения областей α-, β- и γ-дисперсии импеданса. Ткань организма является структурой, обладающей свойствами проводника (электролита) и диэлектрика. Поляризация диэлектрика (§ 12.6) во внешнем электрическом поле происходит не мгновенно, а зависит от времени. Это означает зависимость от време­ни поляризованности диэлектрика е) при воздействии постоянного. электрического поля — напряженность электрического поля):

Если электрическое поле изменяется по гармоническому зако­ну, то поляризованность будет также изменяться по гармоническому закону, а амплитуда поляризованности будет зависеть от частоты изменения поля с запаздыванием по фазе:

 

 
 

Из (12.41) получим выражение для диэлектрической проница­емости:

Из (14.48) следует, что условие (14.47) означает частотную зависимость диэлектрической проницаемости при воздействии переменным (гармоническим) электрическим полем: е = f(ω). Из­менение диэлектрической проницаемости с изменением часто­ты электрического поля означает изменение электроемкости и, как следствие, изменение импеданса.

Запаздывание изменения поляризованности относительно из­менения напряженности электрического поля зависит от механиз­ма поляризации вещества. Самый быстрый механизм — электрон­ная поляризация (см. § 12.6), так как масса электронов достаточно мала. Это соответствует частотам (около 1015 Гц), которые сущест­венно превышают области α-, (β-, и γ-дисперсии.

Ориентационная поляризация воды, молекулы которой имеют сравнительно малую массу, соответствует γ-дисперсии (частоты около 20 ГГц).

Крупные полярные органические молекулы, например белки, имеют значительную массу и успевают реагировать на перемен­ное электрическое поле с частотой 1—10 МГц. Это соответствует β-дисперсии.

При α-дисперсии происходит поляризация целых клеток в ре­зультате диффузии ионов, что занимает относительно большое время, и α-дисперсии соответствует область низких частот (0,1— 10 кГц). В этой области емкостное сопротивление мембран очень велико, поэтому преобладают токи, огибающие клетки и проте­кающие через окружающие клетки растворы электролитов.

Итак, области α-, β- и γ-дисперсии импеданса объясняются тем, что с увеличением частоты переменного электрического поля в явлении поляризации участвуют разные структуры биологиче­ских тканей: при низких частотах на изменение поля реагируют все структуры (α-дисперсия), с увеличением частоты реагируют крупные молекулы-диполи органических соединений и молеку­лы воды (β-дисперсия), а при самых больших частотах реагируют только молекулы воды (γ-дисперсия). Во всех случаях имеет место электронная поляризация. С увеличением частоты электрического тока (электрического поля) все меньше структур будет реагиро­вать на изменение этого поля и меньше будет значение поляризованности Рет. Отсюда, согласно (14.48), с увеличением частоты будет уменьшаться диэлектрическая проницаемость е, а следова­тельно, и электроемкость С, а это, согласно (14.33), приведет к увеличению емкостного сопротивления Хс и импеданса Z. Следо­вательно, на фоне общего хода зависимости Z = f(ω) (см. рис. 14.10) появляются области с меньшим убыванием Z при возраста­нии частоты (области α-, (β- и γ-дисперсии).

Частотная зависимость импеданса позволяет оценить жизнеспо­собность тканей организма, что важно знать для пересадки (транс­плантации) тканей и органов. Различие в частотных зависимостях импеданса получается и в случаях здоровой и больной ткани.

Импеданс тканей и органов зависит также и от их физиологи­ческого состояния. Так, при кровенаполнении сосудов импеданс изменяется в зависимости от состояния сердечно-сосудистой де­ятельности.

Диагностический метод, основанный на регистрации из­менения импеданса тканей в процессе сердечной деятельнос­ти, называют реографией (импеданс-плетизмография).

С помощью этого метода получают реограммы головного мозга (реоэнцефалограмма), сердца (реокардиограмма), магистраль­ных сосудов, легких, печени и конечностей. Измерения обычно проводят на частоте 30 кГц.

В заключение отметим, что знание пассивных электрических свойств биологических тканей важно при разработке теоретиче­ских основ методов электрографии органов и тканей, так как со­здаваемый токовыми диполями электрический ток проходит че­рез них. Кроме того, представления о дисперсии импеданса позво­ляют оценить механизм действия токов и полей, используемых в терапевтических целях.







Дата добавления: 2015-08-30; просмотров: 582. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия