Полупроводниковые стабилитроны
Полупроводниковые стабилитроны предназначены для стабилизации напряжений. Их работа основана на использовании явления электрического пробоя Механизм пробоя может быть туннельным, лавинным или смешанным. У низковольтных стабилитронов (с низким сопротивлением базы) более вероятен туннельный пробой. У стабилитронов с высокоомной базой пробой носит лавинный характер. Материалы, используемые для Стабилитроны изготавливают из кремния, обеспечивающего получение необходимой вольт-амперной характеристики. Германиевые диоды для стабилизации напряжения непригодны, так как пробой у них легко приобретает форму теплового, и характеристика в этом режиме имеет неустойчивый падающий участок. Вольт-амперная характеристика полупроводникового стабилитрона показана на рисунке 1.9.
Рисунок 1.9- Условное обозначение (а); вольт-амперная характеристика стабилитрона (b)
В точке, где пробой является достаточно устойчивым, ток
В современных стабилитронах максимальный ток колеблется в пределах от нескольких десятков миллиампер до нескольких ампер. Превышение максимального тока приводит к выходу стабилитрона из строя. Рабочее напряжение стабилитрона, являющееся напряжением пробоя Напряжение стабилитрона в рабочем режиме мало зависит от тока, что является основой применения этих приборов. На рабочем участке характеристики (от
Оно составляет несколько десятков и даже единиц Ом, причем меньшая величина соответствует стабилитронам, имеющим рабочее напряжение 7 - 15 В и большой рабочий ток. Кроме перечисленных выше, к параметрам стабилитрона относится температурный коэффициент напряжения ТКН, показывающий относительное изменение напряжения стабилизации при изменении температуры на один градус:
Стабилитроны широкого применения обладают сравнительно высоким температурным коэффициентом напряжения (
Рисунок 1.10 - Структура прецизионного стабилитрона с термокомпенсирующими переходами (а); условное обозначение двуханодного диода (b)
При повышении температуры напряжение на стабилизирующем переходе растет, а на термокомпенсирующих переходах – уменьшается; их количество можно подобрать так, что, результирующее напряжение на стабилитроне изменяется незначительно и температурный коэффициент получается около 10-5 К-1. Для стабилизации двухполярных напряжений и для защиты электрических цепей от перенапряжений обеих полярностей применяют двуханодные стабилитроны (рисунок 1.10, b), которые имеют симметричную вольт-амперную характеристику. Такие стабилитроны изготовляют путем введения примесей в пластину кремния одновременно с двух сторон. При этом образуются два Разновидностью стабилитрона является стабистор — полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики. Отличительной особенностью стабисторов, по сравнению со стабилитронами, является меньшее напряжение стабилизации, которое составляет примерно 0,7 В. Для увеличения напряжения стабилизации используют последовательное соединение нескольких стабисторов, смонтированных в одном корпусе или сформированных в одном кристалле. Для увеличения крутизны прямой ветви вольт-амперной характеристики базу стабистора делают низкоомной. Из-за малого сопротивления базы толщина
|