Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Евклид, Архимед, Аполлоний





После завоеваний Александра Македонского научным центром древнего мира становится Александрия Египетская. Птолемей I основал в ней Мусейон (Дом Муз) и пригласил туда виднейших учёных. Это была первая в грекоязычном мире государственная академия, с богатейшей библиотекой (ядром которой послужила библиотека Аристотеля), которая к I веку до н. э. насчитывала 70000 томов. Учёные Александрии объединили вычислительную мощь и древние знания вавилонских и египетских математиков с научными моделями эллинов. Значительно продвинулись плоская и сферическая тригонометрия, статика и гидростатика, оптика, музыка и др. Эратосфен уточнил длину меридиана и изобрёл своё знаменитое «решето». В истории математики известны три великих геометра древности, и прежде всего — Евклид с его «Началами». Тринадцать книг Начал — основа античной математики, итог её 300-летнего развития и база для дальнейших исследований. Влияние и авторитет этой книги были огромны в течение двух тысяч лет.

Фундамент математики, описанный Евклидом, расширил другой великий учёный — Архимед, один из немногих математиков античности, которые одинаково охотно занимались и теоретической, и прикладной наукой. Он, в частности, развив метод исчерпывания, сумел вычислить площади и объёмы многочисленных фигур и тел, ранее не поддававшихся усилиям математиков.

Последним из тройки великих был Аполлоний Пергский, автор глубокого исследования конических сечений.


Упадок античной науки

 

После Аполлония (со II века до н. э.) в античной науке начался спад. Новых глубоких идей не появляется. В 146 году до н. э. Рим захватывает Грецию, а в 31 году до н. э. — Александрию. Среди немногочисленных достижений:

1. открытие конхоиды (Никомед);

2. известная формула Герона для площади треугольника (I век н. э.);

3. содержательное исследование сферической геометрии Менелаем Александрийским;

4. завершение геоцентрической модели мира Птолемея (II век н. э.), для чего потребовалась глубокая разработка плоской и сферической тригонометрии.

Необходимо отметить деятельность Паппа Александрийского (III век). Только благодаря ему до нас дошли сведения об античных учёных и их трудах. На фоне общего застоя и упадка резко выделяется гигантская фигура Диофанта — последнего из великих античных математиков, «отца алгебры». После III века н. э. александрийская школа просуществовала около 100 лет — приход христианства и частые смуты в империи резко снизили интерес к науке. Отдельные учёные труды ещё появляются в Афинах, но в 529 году Юстиниан закрыл Афинскую академию как рассадник язычества. Часть учёных переехала в Персию или Сирию и продолжала труды там. От них уцелевшие сокровища античного знания получили учёные стран ислама.

Заключение

Греческая математика поражает прежде всего красотой и богатством содержания. Многие учёные Нового времени отмечали, что мотивы своих открытий почерпнули у древних. Зачатки анализа заметны у Архимеда, корни алгебры — у Диофанта, аналитическая геометрия — у Аполлония и т. д. Но главное даже не в этом. Два достижения греческой математики далеко пережили своих творцов[9]. Первое — греки построили математику как целостную науку с собственной методологией, основанной на чётко сформулированных законах логики. Второе — они провозгласили, что законы природы постижимы для человеческого разума, и математические модели — ключ к их познанию. В этих двух отношениях античная математика вполне современна.

 

Список использованной литературы:

1. История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.

2. Рыбников К. А. История математики. М., 1994.

3. Хрестоматия по истории математики. Арифметика и алгебра. Теория чисел. Геометрия. Под ред. А. П. Юшкевича. М., 1976







Дата добавления: 2015-08-17; просмотров: 649. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия