Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вязкотекучее состояние полимеров





 

Это состояние полимеров относится к их расплавам, для него характерны преимущественно необратимые деформации, т.е. течение. Перемещение, т.е. рептация макромолекул при течении, осуществляется путем направленной диффузии сегментов. При этом необходимо выполнение двух условий - наличие «тепловой» энергии, достаточной для преодоления межмолекулярного взаимодействия, и микропустот - «дырок», куда осуществляется перемещение сегмента. Последнее условие является определяющим в области температур, близких к температуре стеклования: Тс < Т < (Тс + 120 °С). В этой области существует непосредственная связь между сдвиговой вязкостью и свободным объемом. Она выражается эмпирическим уравнением, предложенным Дулиттом и известным под его именем:

 

 

где А и В - эмпирические константы, последняя из которых близка к единице; V Vсв - удельный и свободный объемы на 1 г соответственно.

При Т > (Тс + 120°С) скорость перемещения сегментов в основном определяется энергетическим фактором. В этих условиях зависимость вязкости полимера от температуры описывается формулой Френкеля-Эйринга, выведенной на основе активационной теории:

 

 

где ∆G - функция Гиббса; ∆S - энтропия; ∆Н - энтальпия активации вязкого течения. Изучение температурной зависимости вязкости позволило определить энтальпию активации вязкого течения по зависимости lnŋ = ƒ(1/T).

Оказалось, что она весьма незначительно превышает энтальпию активации течения низкомолекулярных жидкостей аналогичного химического строения и возрастает лишь для первых членов гомологического ряда, по достижении степени полимеризации 20-30 ∆Н далее не изменяется.

Эти факты прямо указывают на то, что течение полимеров носит сегментальный характер, т. е. перемещение макромолекул происходит в результате направленной вынужденной диффузии сегментов. Энергия активации вязкого течения зависит от химического состава и строения цепи полимера: в случае углеводородов ∆G 25-30 кДж/моль, введение в молекулу полиэтилена боковых ответвлений (1-3 метильных групп на 100 атомов углерода) приводит к повышению энергии активации до 30-50 кДж/моль, для расплавов полярных полимеров энергия активации возрастает до 80-120 кДж/моль.

Вязкостные свойства расплавов полимеров имеют много общего с вязкостными свойствами их концентрированных растворов. В обоих случаях при достижении определенной (критической) молекулярной массы полимера Л/Кр образуется пространственная флуктуационная сетка зацеплений макромолекул. Значения Мкр обычно значительно превышают длину сегмента.Одно из самых низких значений Мкр 4000 известно для линейного полиэтилена, тогда как у полистирола оно на порядок выше Мкр 40000. Зависимость вязкости расплава от молекулярной массы в областях до и после Mкр существенно отличаются. Так, ŋ ~ М1 при М<Мкр и ŋ - М3,5 при М > Мкр.

Одним из проявлений вязкоупругих свойств расплавов являются так называемые нормальные напряжения, возникающие при приложении к расплаву сдвигового напряжения и направленные перпендикулярно к нему. Это явление получило название эффекта Вайссенберга, по имени ученого, всесторонне исследовавшего его. Существует много различных проявлений эффекта Вайссенберга. Одно из них наблюдается при расплаве полимера, заключенного между двумя цилиндрами - вращающимся и неподвижным. При вращении вала (внутреннего цилиндра) возникает сдвиговое усилие, направленное по касательной к жидкости. Макромолекулярные клубки вследствие этого деформируются, однако, тепловое движение сегментов стремится вернуть их к первоначальной конформации гауссова клубка. В результате возникает напряжение, направленное перпендикулярно к сдвиговому, заставляющее «ползти» жидкость вверх по валу (рис. 4.8).

Другой пример наглядного проявления эластических свойств расплавов полимеров относится к их течению через трубы и малые отверстия. В этом случае макромолекулы также деформируются, что приводит к накоплению упругой энергии. При выходе из трубы, когда исчезает напряжение, срабатывает упругое последействие - тепловое движение сегментов стремится возвратить макромолекулярные клубки в недеформированное состояние. В итоге происходит разбухание потока и сокращение его продольных размеров. Это явление учитывают в расчетах диаметра отверстия на выходе из экструдера для получения профиля изделия необходимых размеров.

При повышенных скоростях течения и напряжениях сдвига наблюдается еще одно следствие эластической деформации - потеря устойчивого режима

 

 

течения. При больших скоростях течения макромолекулярные клубки деформируются в такой степени, что запасенная ими упругая энергия начинает превышать кинетическую энергию теплового движения сегментов. В результате этого клубок «стеклуется». Потеря подвижности сегментов приводит к ослаблению связи расплава со стенками трубы и срыву струи на выходе из экструдера. Поскольку стеклуются прежде всего наиболее высокомолекулярные клубки, то еще задолго до разрушения струи она приобретает на выходе из экструдера шероховатость и неправильную, искривленную (спиралеобразную) форму.

Все современные высокопроизводительные методы переработки термопластов, такие как экструзия, литье под давлением, вакуум-формование и другие связаны с переводом полимера в расплав, поэтому эластические свойства расплава являются фактором, определяющим выбор метода и режима переработки. Так, полипропилен перерабатывают в изделия литьем под давлением или экструзией в случае умеренной вязкости расплава; высокомолекулярные марки, имеющие повышенную вязкость расплава, перерабатывают только прессованием.

 







Дата добавления: 2015-08-17; просмотров: 821. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия