Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Б. Уравнение неразрывности для трехмерного течения несжимаемой жидкости.





Из курса математического анализа известно, что непрерывную функцию, имеющую все непрерывные производные, можно разложить в ряд Тейлора. Поэтому можем для скорости и давления записать следующие разложения

; .

Или, пренебрегая малыми величинами высшего порядка, при стремлении Δ l к нулю:

; .

Здесь u и скорость и ее первая производная в точке l;

– скорость в точке ;

p и – давление и его первая производная в точке l;

– давление в точке .

Эти разложения мы будем пользоваться в дальнейшем при составлении указанных дифференциальных уравнений.

Выберем в потоке фиксированный в пространстве элементарный объем в форме параллелепипеда с ребрами dx, dy, dz (рис. 7). Пусть у левой грани этого объема составляющая скорости в направлении оси x равна ux. По достижении правой грани эта составляющая может измениться и стать равной

.

Через левую грань за единицу времени втекает внутрь параллелепипеда объем жидкости, равный произведению нормальной составляющей скорости на площадь грани: wxdydz.

Через правую грань вытекает объем

.

Суммарное поступление жидкости через левую и правую грани равно разности:

.

Аналогично получим, что через грани, перпендикулярные оси у (задняя и передняя грани на рис. 7), Суммарное поступление жидкости внутрь параллелепипеда равно . Через грани, перпендикулярные оси z (нижняя и верхняя на рис. 7), поступает объем . Здесь uy и uz – составляющие скорости в направлении осей y и z. Если внутри параллелепипеда нет источников и стоков, т.е. объем жидкости в нем не меняется, то суммарный расход через все грани равен нулю:

.

Разделив последнее равенство на объем параллелепипеда dxdydz, получим уравнение неразрывности в дифференциальной форме

. (II.7)

При выводе уравнения неразрывности мы не учитывали сжимаемости жидкости. В наиболее общем случае неустановившегося движения сжимаемой жидкости уравнение неразрывности имеет вид (приводится без вывода):

. (II.7)

 

 







Дата добавления: 2015-08-17; просмотров: 679. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия