Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные определения кинематики жидкости. Неразрывность





 

А. Основные определения. Из предыдущего известно, что состояние какого-либо объема покоящейся жидкости полностью определяется величинами внутренних напряжений (гидростатических давлений) в отдельных его точках, возникающих в результате воздействия на жидкость внешних сил. Для характеристики состояния движущейся жидкости недостаточно знать только распределение давлений. Необходимо знать также, с какими скоростями движется жидкость в различных точках, то есть задачей гидродинамики является определение скоростей и давлений жидкости в различных точках потока и в различные моменты времени t. В общем случае вектор скорости u и давление p являются функциями четырех переменных:

, .

Если скорость и давление в любой фиксированной точке потока остаются неизменными во времени (т. е. являются функциями только координат х, у, z), то течение называется установившимся. Пример установившегося течения – истечение жидкости из бака под постоянным напором. Если скорость и давление меняются со временем, то течение – неустановившееся. Например, если при истечении из бака убыль жидкости не восполняется, то напор, скорость и давление в любой точке постепенно уменьшаются, это течение неустановившееся.

Мгновенную картину течения наглядно представляют линии тока (рис. 6, а). В каждой точке линии тока вектор скорости направлен по касательной к ней. При установившемся течении линии тока совпадают с траекториями частиц, при неустановившемся течении они могут не совпадать.

 

Если провести линии тока через все точки элементарно-малого контура, то образованная ими поверхность ограничит элементарную струйку (рис. 6, б). В элементарной струйке жидкость течет, не смешиваясь с соседними объемами, так как, по определению, векторы скорости направлены по касательной к ее поверхности. Площадь сечения струйки dS выбирают достаточно малой для того, чтобы вектор скорости u оставался в этом сечении неизменным по величине.

Объем жидкости, протекающей через сечение струйки в единицу времени, называют элементарным расходом dQ. Он равен произведению длины вектора скорости на площадь сечения струйки

. (II.1)

Размерность расхода – м3/сек.

Рассматривая поток жидкости, такой, например, как в трубе или канале, допустимо считать, что он состоит из большого числа элементарных струек. В этом случае сечение потока (в гидравлике его называют «живым сечением») равно сумме сечений элементарных струек. Расход потока есть сумма расходов струек, в пределе – интеграл по площади сечения:

. (II.2)

При известном расходе Q легко определить среднюю скорость потока V в данном сечении:

. (II.3)

Для характеристики торможения потока твердыми стенками кроме сечения S в гидравлике вводятся еще понятия смоченного периметра χ – периметр сечения в пределах соприкосновения с твердыми стенками трубы или канала, и гидравлического радиуса R, причем

. (II.4)

Размерность смоченного периметра и гидравлического радиуса – м.

Как видно из выражения (II.4), гидравлический радиус характеризует компактность сечения потока. Для круглой трубы радиуса r, например, гидравлический радиус

, если d – диаметр трубы, то .

Если в потоке между какими-нибудь двумя его сечениями количество жидкости не пополняется извне и не убывает (нет источников и стоков), то масса протекающей через эти два сечения жидкости сохраняется неизменной. Математически этот принцип выражается уравнением неразрывности (это название подчеркивает, что в рассматриваемых сечениях поток сплошной, не содержит полостей и разрывов).

Наиболее просто записывается уравнение неразрывности для установившегося одномерного течения, в котором скорость меняется только в направлении одной продольной координаты. Примерами одномерного течения являются элементарная струйка, движение в трубе и канале. Для элементарной струйки несжимаемой жидкости принцип сохранения массы выражается через постоянство объемного расхода (II. 1) в струйке (рис. 6, б):

. (II.5)

Очевидно, что для потока в трубе или канале необходимо постоянство расхода, вычисленного по средней скорости wср:

. (II.5а)

В случае одномерного течения сжимаемой жидкости принцип неразрывности требует постоянства массового расхода, который равен произведению объемного расхода на плотность ρ:

. (II.6)

Одномерное течение несжимаемой жидкости является предметом изучения гидравлики. В отличие от нее гидродинамика рассматривает более сложные двухмерные и трехмерные потоки, в которых скорость может изменяться в направлении двух дли трех координатных осей.







Дата добавления: 2015-08-17; просмотров: 496. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия