Решение общего дифференциального уравнения установившегося потенциального одномерного потока. Показатель формы потока
При условии вытеснения флюида из пласта или его нагнетания в пласт через галерею или скважину условимся принимать за координату произвольной точки пласта расстояние r до этой точки от: 1) галереи (для прямолинейно- параллельного потока); 2) центра контура скважины в основной плоскости (плоскости подошвы пласта) фильтрации (для плоско-радиального потока); 3) центра полусферического забоя скважины (для сферически-радиального потока). В случае одномерного потока пласт представляется своего рода укрупнённой трубкой тока, а из условия неразрывности потока следует, что при установившейся одномерной фильтрации расход массы жидкости в единицу времени (массовый дебит G) через все изобарические (эквипотенциальные) поверхности, определяемые уравнением r=const, в трубке тока будет один и тот же. Т.о. r u= G /F(r), 3.2 где F=F(r)- площадь эквипотенциальной поверхности в функции координаты r. Отметим, в данном случае средняя скорость фильтрации на некоторой эквипотенциальной поверхности совпадает со скоростью фильтрации в любой точке этой поверхности. Определим величину площади F для различных видов одномерных потоков: прямолинейно-параллельный поток - F(r)=Bh; плоско-радиальный поток - F(r) =2p h r; радиально-сферический поток - F(r) = 2p r2. Обратившись к уравнению (2.7) следует отметить, что положительный массовый дебит будет в тех случаях, когда r отсчитывается от стока, т.е. галерея или скважина - эксплуатационная. Приравнивая правые части (2.7) и (3.2), получим общее дифференциальное уравнение трех простейших видов потенциального одномерного потока:
3.3
где А и j имеют значения: * прямолинейно-параллельный поток - A=Bh, j=0; * плоско-радиальный поток - A =2p h, j=1; * радиально-сферический поток - A = 2p, j=2. Параметр j получил название показателя формы потока, т.к. характеризует вид одномерного течения. Разделив в (3.3) переменные и проинтегрировав, получим
, 3.4
где С - произвольная постоянная, определяемая из граничных условий. Из формулы (3.4) следует, что она верна при значениях j=0;2. При j=1 (плоско-радиальный поток) интегрирование (3.3) даёт
. 3.5
Найдем единственное решение, соответствующее заданным граничным условиям, т.е. определим постоянную С. Наиболее часто представляются следующие два варианта задачи. 1. Известны: постоянный массовый дебит G и значение потенциала j на одной из граничных поверхностей рассматриваемой области пласта, например, на питающем контуре (пластовое значение потенциала) эксплуатационной галереи или скважины ( G=G0=const, j = j к при r=rк ). Подставляя данные значения в (3.4) получим
. 3.6
Для замыкания данного уравнения необходимо соотношение для массового дебита G=G0=const. 2. Известны: значения потенциалов на двух граничных поверхностях пласта, например, на забое скважины и на границе пласта с областью питания (на контуре питания). Т.о. j = j с при r=rc; j = j кприr=Rк. Подставляя в равенство (3.4) один раз значения Rк и j к, а другой раз значенияj с и rc, исключая из двух полученных уравнений постоянную С, найдём массовый дебит G или объёмный дебит Q: 3.7
где значения А и j приведены выше. Исключая из (3.6) величину G / A, при помощи формулы (3.7) получим
. 3.8
По (3.8) можно определить значение потенциала для любой точки пласта с координатой r, если дебит не известен. В случае плоско-радиального потока (j=1) соответственно рассмотренным выше двум вариантам задачи и поставленным граничным условиям получим равенства: 3.9
3.10
Т.о., формулы (3.9), (3.10) действительны только для плоско-радиального потенциального потока любой жидкости. Для других видов одномерного движения имеем формулы (3.7), (3.8). Распределение градиента потенциала описывается зависимостью (3.3).
|